Lattice points in the four-dimensional ball
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 33, Tome 458 (2017), pp. 236-246
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $r_4(n)$ denote the number of representations of $n$ as a sum of $4$ squares. The generating function $\zeta_4(s)$ is Epstein's zeta function. We consider the Riesz mean
$$
D_\rho(x;\zeta_4)=\frac1{\Gamma(\rho+1)}\sum_{n\leq x}(x-n)^\rho r_4(n)
$$
for any fixed $\rho>0$ and define the error term $\Delta_4(x;\zeta_4)$ by
$$
D_\rho(x;\zeta_4)=\frac{\pi^2x^{2+\rho}}{\Gamma(\rho+3)}+\frac{x^\rho}{\Gamma(\rho+1)}\zeta_4(0)+\Delta_\rho(x;\zeta_4).
$$
In § 2 one proves that
$$
\Delta_4(x;\zeta_4)=
\begin{cases}
O(x^{1/2+\rho+\epsilon})(1\rho\leq3/2),\\
O(x^{9/8+\rho/4})(1/2\rho\leq1),\\
O(x^{5/4+\epsilon})(0\rho\leq1/2).
\end{cases}
$$
In § 3 one proves that
$$
\Delta_{1/2}(x;\zeta_4)=\Omega(x\log^{1/2}x).
$$
@article{ZNSL_2017_458_a11,
author = {O. M. Fomenko},
title = {Lattice points in the four-dimensional ball},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {236--246},
publisher = {mathdoc},
volume = {458},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a11/}
}
O. M. Fomenko. Lattice points in the four-dimensional ball. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 33, Tome 458 (2017), pp. 236-246. http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a11/