Lattice points in the four-dimensional ball
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 33, Tome 458 (2017), pp. 236-246

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $r_4(n)$ denote the number of representations of $n$ as a sum of $4$ squares. The generating function $\zeta_4(s)$ is Epstein's zeta function. We consider the Riesz mean $$ D_\rho(x;\zeta_4)=\frac1{\Gamma(\rho+1)}\sum_{n\leq x}(x-n)^\rho r_4(n) $$ for any fixed $\rho>0$ and define the error term $\Delta_4(x;\zeta_4)$ by $$ D_\rho(x;\zeta_4)=\frac{\pi^2x^{2+\rho}}{\Gamma(\rho+3)}+\frac{x^\rho}{\Gamma(\rho+1)}\zeta_4(0)+\Delta_\rho(x;\zeta_4). $$ In § 2 one proves that $$ \Delta_4(x;\zeta_4)= \begin{cases} O(x^{1/2+\rho+\epsilon})(1\rho\leq3/2),\\ O(x^{9/8+\rho/4})(1/2\rho\leq1),\\ O(x^{5/4+\epsilon})(0\rho\leq1/2). \end{cases} $$ In § 3 one proves that $$ \Delta_{1/2}(x;\zeta_4)=\Omega(x\log^{1/2}x). $$
@article{ZNSL_2017_458_a11,
     author = {O. M. Fomenko},
     title = {Lattice points in the four-dimensional ball},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {236--246},
     publisher = {mathdoc},
     volume = {458},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a11/}
}
TY  - JOUR
AU  - O. M. Fomenko
TI  - Lattice points in the four-dimensional ball
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 236
EP  - 246
VL  - 458
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a11/
LA  - ru
ID  - ZNSL_2017_458_a11
ER  - 
%0 Journal Article
%A O. M. Fomenko
%T Lattice points in the four-dimensional ball
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 236-246
%V 458
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a11/
%G ru
%F ZNSL_2017_458_a11
O. M. Fomenko. Lattice points in the four-dimensional ball. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 33, Tome 458 (2017), pp. 236-246. http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a11/