On Riesz means of the coefficients of Epstein's zeta functions
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 33, Tome 458 (2017), pp. 218-235 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $r_k(n)$ denote the number of lattice points on a $k$-dimensional sphere of radius $\sqrt n$.The generating function $$ \zeta_k(s)=\sum^\infty_{n=1}r_k(n)n^{-s},\ k\geq2, $$ is Epstein's zeta-function. Let $k=3$. We consider the Riesz mean of the type $$ D_\rho(x;\zeta_3)=\frac1{\Gamma(\rho+1)}\sum_{n\leq x}(x-n)^\rho r_3(n) $$ for any fixed $\rho>0$ and define the error term $\Delta_\rho(x;\zeta_3)$ by $$ D_\rho(x;\zeta_3)=\frac{\pi^{3/2}x^{\rho+3/2}}{\Gamma(\rho+5/2)}+\frac{x^\rho}{\Gamma(\rho+1)}\zeta_3(0)+\Delta_\rho(x;\zeta_3). $$ A result of K. Chandrasekharan and R. Narasimhan (1962, MR25#3911) gives $$ \Delta_\rho(x;\zeta_3)= \begin{cases} O(x^{1/2+\rho/2)}&(\rho>1),\\ \Omega_\pm(x^{1/2+\rho/2})&(\rho\geq0). \end{cases} $$ In § 2 one proves that $$ \Delta_\rho(x;\zeta_3)= \begin{cases} O(x\log x)&(\rho=1),\\ O(x^{2/3+\rho/3+\epsilon})&(1/2<\rho<1),\\ O(x^{3/4+\rho/4+\epsilon})&(0<\rho\leq1/2). \end{cases} $$ In § 3 one mentions a few examples for which results of § 2 are applicable. In § 4 one investigates Riesz means of the coefficients of $\zeta_k(s)$, $k\geq4$.
@article{ZNSL_2017_458_a10,
     author = {O. M. Fomenko},
     title = {On {Riesz} means of the coefficients of {Epstein's} zeta functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {218--235},
     year = {2017},
     volume = {458},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a10/}
}
TY  - JOUR
AU  - O. M. Fomenko
TI  - On Riesz means of the coefficients of Epstein's zeta functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 218
EP  - 235
VL  - 458
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a10/
LA  - ru
ID  - ZNSL_2017_458_a10
ER  - 
%0 Journal Article
%A O. M. Fomenko
%T On Riesz means of the coefficients of Epstein's zeta functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 218-235
%V 458
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a10/
%G ru
%F ZNSL_2017_458_a10
O. M. Fomenko. On Riesz means of the coefficients of Epstein's zeta functions. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 33, Tome 458 (2017), pp. 218-235. http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a10/

[1] D. R. Heath-Brown, “Lattice points in the sphere”, Number theory in progress, v. 2, de Gruyter, Berlin, 1999, 883–892 | MR | Zbl

[2] Y.-K. Lau, K.-M. Tsang, “Large values of error terms of a class of arithmetical functions”, J. reine angew. Math., 544 (2002), 25–38 | MR | Zbl

[3] O. M. Fomenko, “Tselye tochki v kruge i share”, Zap. nauchn. semin. POMI, 418, 2013, 198–220

[4] K. Chandrasekharan, R. Narasimhan, “Functional equations with multiple gamma factors and the average order of arithmetical functions”, Ann. Math., 76 (1962), 93–136 | DOI | MR | Zbl

[5] F. Chamizo, “Lattice points in bodies of revolution”, Acta Arithm., 85 (1998), 265–277 | DOI | MR | Zbl

[6] K. Chandasekharan, R. Narasimhan, “Hecke's functional equation and the average order of arithmetical functions”, Acta Arithm., 6 (1961), 487–503 | DOI | MR

[7] S. Krupička, “On the number of lattice points in multidimensional convex bodies”, Czech. Math. J., 7 (1957), 524–552 (in Czech with German symmary) | Zbl

[8] E. C. Titchmarsh, The theory of the Riemann zeta-function ; New York, 1986 | MR

[9] K. Prachar, Primzahlverteilung, Berliln, 1957 | MR

[10] E. Landau, Ausgewählte Abhandlungen zur Gitterpunktlehre, Berlin, 1962 | MR

[11] F. Chamizo, H. Iwaniec, “On the sphere problem”, Rev. Mat. Iberoamericana, 11 (1995), 417–429 | DOI | MR | Zbl

[12] Y.-K. Lau, “On the mean square formula for the error term for a class of arithmetical functions”, Mh. Math., 128 (1999), 111–129 | DOI | MR | Zbl

[13] K.-C. Tong, “On divisor problems. I”, Acta Math. Sinica, 5 (1955), 313–324 ; “On divisor problems. III”, Acta Math. Sinica, 6 (1956), 515–541 | MR | Zbl | MR | Zbl

[14] O. M. Fomenko, “O srednem kvadratichnom ostatogo chlena dlya dzeta-funktsii Dedekinda”, Zap. nauchn. semin. POMI, 440, 2015, 187–204 | MR

[15] J. L. Hafner, “On the representation of the summatory functions of a class of arithmetical functions”, Analytic Number Theory, Lecture Notes in Math., 899, Springer, Berlin, 1981, 148–165 | DOI | MR

[16] D. R. Heath-Brown, “The distribution and moments of the error term in the Dirichlet divisor problem”, Acta Arithm., 60 (1992), 389–415 | DOI | MR | Zbl

[17] A. Walfisz, Weylsche Exponentialsummen in der Neueren Zahlentheorie, Berlin, 1963 | MR

[18] O. M. Fomenko, “Tselye tochki v mnogomernykh sharakh”, Zap. nauchn. semin. POMI, 449, 2016, 261–274 | MR

[19] K. Ramachandra, A. Sankaranarayanan, “Hardy's theorem for zeta-functions of quadratic forms”, Proc. Indian Acad. Sci. (Math. Sci.), 106 (1996), 217–226 | DOI | MR | Zbl