On Riesz means of the coefficients of Epstein's zeta functions
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 33, Tome 458 (2017), pp. 218-235

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $r_k(n)$ denote the number of lattice points on a $k$-dimensional sphere of radius $\sqrt n$.The generating function $$ \zeta_k(s)=\sum^\infty_{n=1}r_k(n)n^{-s},\ k\geq2, $$ is Epstein's zeta-function. Let $k=3$. We consider the Riesz mean of the type $$ D_\rho(x;\zeta_3)=\frac1{\Gamma(\rho+1)}\sum_{n\leq x}(x-n)^\rho r_3(n) $$ for any fixed $\rho>0$ and define the error term $\Delta_\rho(x;\zeta_3)$ by $$ D_\rho(x;\zeta_3)=\frac{\pi^{3/2}x^{\rho+3/2}}{\Gamma(\rho+5/2)}+\frac{x^\rho}{\Gamma(\rho+1)}\zeta_3(0)+\Delta_\rho(x;\zeta_3). $$ A result of K. Chandrasekharan and R. Narasimhan (1962, MR25#3911) gives $$ \Delta_\rho(x;\zeta_3)= \begin{cases} O(x^{1/2+\rho/2)}(\rho>1),\\ \Omega_\pm(x^{1/2+\rho/2})(\rho\geq0). \end{cases} $$ In § 2 one proves that $$ \Delta_\rho(x;\zeta_3)= \begin{cases} O(x\log x)(\rho=1),\\ O(x^{2/3+\rho/3+\epsilon})(1/2\rho1),\\ O(x^{3/4+\rho/4+\epsilon})(0\rho\leq1/2). \end{cases} $$ In § 3 one mentions a few examples for which results of § 2 are applicable. In § 4 one investigates Riesz means of the coefficients of $\zeta_k(s)$, $k\geq4$.
@article{ZNSL_2017_458_a10,
     author = {O. M. Fomenko},
     title = {On {Riesz} means of the coefficients of {Epstein's} zeta functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {218--235},
     publisher = {mathdoc},
     volume = {458},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a10/}
}
TY  - JOUR
AU  - O. M. Fomenko
TI  - On Riesz means of the coefficients of Epstein's zeta functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 218
EP  - 235
VL  - 458
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a10/
LA  - ru
ID  - ZNSL_2017_458_a10
ER  - 
%0 Journal Article
%A O. M. Fomenko
%T On Riesz means of the coefficients of Epstein's zeta functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 218-235
%V 458
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a10/
%G ru
%F ZNSL_2017_458_a10
O. M. Fomenko. On Riesz means of the coefficients of Epstein's zeta functions. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 33, Tome 458 (2017), pp. 218-235. http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a10/