On Riesz means of the coefficients of Epstein's zeta functions
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 33, Tome 458 (2017), pp. 218-235
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $r_k(n)$ denote the number of lattice points on a $k$-dimensional sphere of radius $\sqrt n$.The generating function
$$
\zeta_k(s)=\sum^\infty_{n=1}r_k(n)n^{-s},\ k\geq2,
$$
is Epstein's zeta-function. Let $k=3$. We consider the Riesz mean of the type
$$
D_\rho(x;\zeta_3)=\frac1{\Gamma(\rho+1)}\sum_{n\leq x}(x-n)^\rho r_3(n)
$$
for any fixed $\rho>0$ and define the error term $\Delta_\rho(x;\zeta_3)$ by
$$
D_\rho(x;\zeta_3)=\frac{\pi^{3/2}x^{\rho+3/2}}{\Gamma(\rho+5/2)}+\frac{x^\rho}{\Gamma(\rho+1)}\zeta_3(0)+\Delta_\rho(x;\zeta_3).
$$
A result of K. Chandrasekharan and R. Narasimhan (1962, MR25#3911) gives
$$
\Delta_\rho(x;\zeta_3)=
\begin{cases}
O(x^{1/2+\rho/2)}(\rho>1),\\
\Omega_\pm(x^{1/2+\rho/2})(\rho\geq0).
\end{cases}
$$
In § 2 one proves that
$$
\Delta_\rho(x;\zeta_3)=
\begin{cases}
O(x\log x)(\rho=1),\\
O(x^{2/3+\rho/3+\epsilon})(1/2\rho1),\\
O(x^{3/4+\rho/4+\epsilon})(0\rho\leq1/2).
\end{cases}
$$
In § 3 one mentions a few examples for which results of § 2 are applicable.
In § 4 one investigates Riesz means of the coefficients of $\zeta_k(s)$, $k\geq4$.
@article{ZNSL_2017_458_a10,
author = {O. M. Fomenko},
title = {On {Riesz} means of the coefficients of {Epstein's} zeta functions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {218--235},
publisher = {mathdoc},
volume = {458},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a10/}
}
O. M. Fomenko. On Riesz means of the coefficients of Epstein's zeta functions. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 33, Tome 458 (2017), pp. 218-235. http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a10/