Alternating sums of elements of continued fractions and the Minkowski question mark function
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 33, Tome 458 (2017), pp. 13-16
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a function $A(t)$ $(0\leq t\leq1)$ related to the Minkowski function $?(t)$. $A(t)$ has properties akin to those of $?(t)$ (in particular it satisfies similar functional equations, is continuous and $A'(t)=0$ almost everywhere with respect to Lebesgue measure). But unlike $?(t)$, the function $A(t)$ is not increasing. In reality it is not monotonic on any subinterval of $[0,1]$.
@article{ZNSL_2017_458_a1,
     author = {E. P. Golubeva},
     title = {Alternating sums of elements of continued fractions and the {Minkowski} question mark function},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {13--16},
     year = {2017},
     volume = {458},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a1/}
}
TY  - JOUR
AU  - E. P. Golubeva
TI  - Alternating sums of elements of continued fractions and the Minkowski question mark function
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 13
EP  - 16
VL  - 458
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a1/
LA  - ru
ID  - ZNSL_2017_458_a1
ER  - 
%0 Journal Article
%A E. P. Golubeva
%T Alternating sums of elements of continued fractions and the Minkowski question mark function
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 13-16
%V 458
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a1/
%G ru
%F ZNSL_2017_458_a1
E. P. Golubeva. Alternating sums of elements of continued fractions and the Minkowski question mark function. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 33, Tome 458 (2017), pp. 13-16. http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a1/

[1] D. B. Zagier, “Nombre de classes et fractions continues”, Astérisque, 24–25 (1975), 81–97 | MR | Zbl

[2] V. N. Popov, “Asimptotika summy summ elementov nepreryvnykh drobei chisel vida $a/p$”, Zap. nauchn. semin. LOMI, 91, 1979, 81–93 | MR | Zbl

[3] E. P. Golubeva, “O dlinakh periodov razlozheniya v nepreryvnuyu drob kvadratichnykh irratsionalnostei i chislakh klassov veschestvennykh kvadratichnykh polei. II”, Zap. nauchn. semin. LOMI, 168, 1988, 11–22 | MR | Zbl

[4] H. Minkowski, Gesammelte Abhandlungen, v. 2, 1911, 50–51

[5] A. Denjoy, “Sur une function réelle de Minkowski”, J. Math. Pures Appl., 17:2 (1938), 105–151 | Zbl

[6] R. Salem, “On some singular monotonic functions which are strictly increasing”, Trans. Amer. Math. Soc., 53:3 (1943), 427–439 | DOI | MR | Zbl

[7] E. P. Golubeva, “O ploskoi vypukloi krivoi s bolshim chislom tselykh tochek”, Zap. nauchn. semin. POMI, 357, 2008, 22–32 | Zbl