Alternating sums of elements of continued fractions and the Minkowski question mark function
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 33, Tome 458 (2017), pp. 13-16

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a function $A(t)$ $(0\leq t\leq1)$ related to the Minkowski function $?(t)$. $A(t)$ has properties akin to those of $?(t)$ (in particular it satisfies similar functional equations, is continuous and $A'(t)=0$ almost everywhere with respect to Lebesgue measure). But unlike $?(t)$, the function $A(t)$ is not increasing. In reality it is not monotonic on any subinterval of $[0,1]$.
@article{ZNSL_2017_458_a1,
     author = {E. P. Golubeva},
     title = {Alternating sums of elements of continued fractions and the {Minkowski} question mark function},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {13--16},
     publisher = {mathdoc},
     volume = {458},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a1/}
}
TY  - JOUR
AU  - E. P. Golubeva
TI  - Alternating sums of elements of continued fractions and the Minkowski question mark function
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 13
EP  - 16
VL  - 458
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a1/
LA  - ru
ID  - ZNSL_2017_458_a1
ER  - 
%0 Journal Article
%A E. P. Golubeva
%T Alternating sums of elements of continued fractions and the Minkowski question mark function
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 13-16
%V 458
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a1/
%G ru
%F ZNSL_2017_458_a1
E. P. Golubeva. Alternating sums of elements of continued fractions and the Minkowski question mark function. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 33, Tome 458 (2017), pp. 13-16. http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a1/