On estimation of functions of a~parameter observed in Gaussian noise
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 25, Tome 457 (2017), pp. 183-193

Voir la notice de l'article provenant de la source Math-Net.Ru

The main problem of the paper looks as follows. A functional parameter $\theta\in\Theta\subset L_2(-\infty,\infty)$ is observed in Gaussian noise. The problem is to estimate the value $F(\theta)$ of a given function $F$. A construction of asymptotically efficient estimates for $F(\theta)$ is suggested under the conditions that $\Theta$ admits approximations by subspaces $H_T\subset L_2$ with the reproducing kernels $K_T(t, s)$, $K_T(t,t)\le T$.
@article{ZNSL_2017_457_a9,
     author = {I. A. Ibragimov},
     title = {On estimation of functions of a~parameter observed in {Gaussian} noise},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {183--193},
     publisher = {mathdoc},
     volume = {457},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a9/}
}
TY  - JOUR
AU  - I. A. Ibragimov
TI  - On estimation of functions of a~parameter observed in Gaussian noise
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 183
EP  - 193
VL  - 457
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a9/
LA  - ru
ID  - ZNSL_2017_457_a9
ER  - 
%0 Journal Article
%A I. A. Ibragimov
%T On estimation of functions of a~parameter observed in Gaussian noise
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 183-193
%V 457
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a9/
%G ru
%F ZNSL_2017_457_a9
I. A. Ibragimov. On estimation of functions of a~parameter observed in Gaussian noise. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 25, Tome 457 (2017), pp. 183-193. http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a9/