Deviation inequalities for convex functions motivated by the Talagrand conjecture
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 25, Tome 457 (2017), pp. 168-182 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Motivated by Talagrand's conjecture on regularization properties of the natural semigroup on the Boolean hypercube, and in particular its continuous analogue involving regularization properties of the Ornstein-Uhlenbeck semigroup acting on integrable functions, we explore deviation inequalities for log-semiconvex functions under Gaussian measure.
@article{ZNSL_2017_457_a8,
     author = {N. Gozlan and M. Madiman and C. Roberto and P. M. Samson},
     title = {Deviation inequalities for convex functions motivated by the {Talagrand} conjecture},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {168--182},
     year = {2017},
     volume = {457},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a8/}
}
TY  - JOUR
AU  - N. Gozlan
AU  - M. Madiman
AU  - C. Roberto
AU  - P. M. Samson
TI  - Deviation inequalities for convex functions motivated by the Talagrand conjecture
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 168
EP  - 182
VL  - 457
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a8/
LA  - en
ID  - ZNSL_2017_457_a8
ER  - 
%0 Journal Article
%A N. Gozlan
%A M. Madiman
%A C. Roberto
%A P. M. Samson
%T Deviation inequalities for convex functions motivated by the Talagrand conjecture
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 168-182
%V 457
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a8/
%G en
%F ZNSL_2017_457_a8
N. Gozlan; M. Madiman; C. Roberto; P. M. Samson. Deviation inequalities for convex functions motivated by the Talagrand conjecture. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 25, Tome 457 (2017), pp. 168-182. http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a8/

[1] K. Ball, F. Barthe, W. Bednorz, K. Oleszkiewicz, P. Wolff, “$L^1$-smoothing for the Ornstein-Uhlenbeck semigroup”, Math., 59:1 (2013), 160–168 | MR | Zbl

[2] F. Barthe, N. Hue, “On Gaussian Brunn–Minkowski inequalities”, Studia Math., 191:3 (2009), 283–304 | DOI | MR | Zbl

[3] C. Borell, “The Brunn–Minkowski inequality in Gauss space”, Invent. Math., 30:2 (1975), 207–216 | DOI | MR | Zbl

[4] C. Borell, “The Ehrhard inequality”, C. R. Math. Acad. Sci. Paris, 337:10 (2003), 663–666 | DOI | MR | Zbl

[5] A. Ehrhard, “Symétrisation dans l'espace de Gauss”, Math. Scand., 53:2 (1983), 281–301 | DOI | MR | Zbl

[6] R. Eldan, J. R. Lee, Regularization under diffusion and anti-concentration of temperature, Preprint, 2014, arXiv: 1410.3887

[7] P. Graczyk, T. Kemp, J.-J. Loeb, T. Zak, Hypercontractivity for log-subharmonic functions, Preprint, 2008, arXiv: 0802.4260v2 | MR

[8] P. Graczyk, T. Kemp, J.-J. Loeb, “Hypercontractivity for log-subharmonic functions”, J. Funct. Anal., 258:6 (2010), 1785–1805 | DOI | MR | Zbl

[9] L. Gross, “Logarithmic Sobolev inequalities”, Amer. J. Math., 97:4 (1975), 1061–1083 | DOI | MR

[10] R. Latała, “A note on the Ehrhard inequality”, Studia Math., 118:2 (1996), 169–174 | DOI | MR | Zbl

[11] J. Lehec, “Regularization in $L_1$ for the Ornstein-Uhlenbeck semigroup”, Ann. Fac. Sci. Toulouse Math. (6), 25:1 (2016), 191–204 | DOI | MR | Zbl

[12] A. W. Marshall, I. Olkin, B. C. Arnold, Inequalities: theory of majorization and its applications, Springer Series in Statistics, second edition, Springer, New York, 2011 | DOI | MR | Zbl

[13] E. Nelson, “A quartic interaction in two dimensions”, Math. Theory of Elementary Particles Proc. Conf. (Dedham, Mass., 1965), M.I.T. Press, Cambridge, Mass., 1966, 69–73 | MR

[14] E. Nelson, “The free Markoff field”, J. Functional Analysis, 12 (1973), 211–227 | DOI | MR | Zbl

[15] G. Paouris, P. Valettas, A Gaussian small deviation inequality for convex functions, Preprint, 2016, arXiv: 1611.01723

[16] J. Soviet Math., 9 (1978), 9–18 | DOI | MR | Zbl | Zbl

[17] M. Talagrand, “A conjecture on convolution operators, and a non-Dunford-Pettis operator on $L^1$”, Israel J. Math., 68:1 (1989), 82–88 | DOI | MR | Zbl

[18] R. van Handel, The Borell–Ehrhard game, Preprint, 2016, arXiv: 1605.00285 | MR