@article{ZNSL_2017_457_a8,
author = {N. Gozlan and M. Madiman and C. Roberto and P. M. Samson},
title = {Deviation inequalities for convex functions motivated by the {Talagrand} conjecture},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {168--182},
year = {2017},
volume = {457},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a8/}
}
TY - JOUR AU - N. Gozlan AU - M. Madiman AU - C. Roberto AU - P. M. Samson TI - Deviation inequalities for convex functions motivated by the Talagrand conjecture JO - Zapiski Nauchnykh Seminarov POMI PY - 2017 SP - 168 EP - 182 VL - 457 UR - http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a8/ LA - en ID - ZNSL_2017_457_a8 ER -
%0 Journal Article %A N. Gozlan %A M. Madiman %A C. Roberto %A P. M. Samson %T Deviation inequalities for convex functions motivated by the Talagrand conjecture %J Zapiski Nauchnykh Seminarov POMI %D 2017 %P 168-182 %V 457 %U http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a8/ %G en %F ZNSL_2017_457_a8
N. Gozlan; M. Madiman; C. Roberto; P. M. Samson. Deviation inequalities for convex functions motivated by the Talagrand conjecture. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 25, Tome 457 (2017), pp. 168-182. http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a8/
[1] K. Ball, F. Barthe, W. Bednorz, K. Oleszkiewicz, P. Wolff, “$L^1$-smoothing for the Ornstein-Uhlenbeck semigroup”, Math., 59:1 (2013), 160–168 | MR | Zbl
[2] F. Barthe, N. Hue, “On Gaussian Brunn–Minkowski inequalities”, Studia Math., 191:3 (2009), 283–304 | DOI | MR | Zbl
[3] C. Borell, “The Brunn–Minkowski inequality in Gauss space”, Invent. Math., 30:2 (1975), 207–216 | DOI | MR | Zbl
[4] C. Borell, “The Ehrhard inequality”, C. R. Math. Acad. Sci. Paris, 337:10 (2003), 663–666 | DOI | MR | Zbl
[5] A. Ehrhard, “Symétrisation dans l'espace de Gauss”, Math. Scand., 53:2 (1983), 281–301 | DOI | MR | Zbl
[6] R. Eldan, J. R. Lee, Regularization under diffusion and anti-concentration of temperature, Preprint, 2014, arXiv: 1410.3887
[7] P. Graczyk, T. Kemp, J.-J. Loeb, T. Zak, Hypercontractivity for log-subharmonic functions, Preprint, 2008, arXiv: 0802.4260v2 | MR
[8] P. Graczyk, T. Kemp, J.-J. Loeb, “Hypercontractivity for log-subharmonic functions”, J. Funct. Anal., 258:6 (2010), 1785–1805 | DOI | MR | Zbl
[9] L. Gross, “Logarithmic Sobolev inequalities”, Amer. J. Math., 97:4 (1975), 1061–1083 | DOI | MR
[10] R. Latała, “A note on the Ehrhard inequality”, Studia Math., 118:2 (1996), 169–174 | DOI | MR | Zbl
[11] J. Lehec, “Regularization in $L_1$ for the Ornstein-Uhlenbeck semigroup”, Ann. Fac. Sci. Toulouse Math. (6), 25:1 (2016), 191–204 | DOI | MR | Zbl
[12] A. W. Marshall, I. Olkin, B. C. Arnold, Inequalities: theory of majorization and its applications, Springer Series in Statistics, second edition, Springer, New York, 2011 | DOI | MR | Zbl
[13] E. Nelson, “A quartic interaction in two dimensions”, Math. Theory of Elementary Particles Proc. Conf. (Dedham, Mass., 1965), M.I.T. Press, Cambridge, Mass., 1966, 69–73 | MR
[14] E. Nelson, “The free Markoff field”, J. Functional Analysis, 12 (1973), 211–227 | DOI | MR | Zbl
[15] G. Paouris, P. Valettas, A Gaussian small deviation inequality for convex functions, Preprint, 2016, arXiv: 1611.01723
[16] J. Soviet Math., 9 (1978), 9–18 | DOI | MR | Zbl | Zbl
[17] M. Talagrand, “A conjecture on convolution operators, and a non-Dunford-Pettis operator on $L^1$”, Israel J. Math., 68:1 (1989), 82–88 | DOI | MR | Zbl
[18] R. van Handel, The Borell–Ehrhard game, Preprint, 2016, arXiv: 1605.00285 | MR