@article{ZNSL_2017_457_a7,
author = {W. Gangbo and J. Haskovec and P. Markowich and J. Sierra},
title = {An optimal transport approach for the kinetic {Bohmian} equation},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {114--167},
year = {2017},
volume = {457},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a7/}
}
TY - JOUR AU - W. Gangbo AU - J. Haskovec AU - P. Markowich AU - J. Sierra TI - An optimal transport approach for the kinetic Bohmian equation JO - Zapiski Nauchnykh Seminarov POMI PY - 2017 SP - 114 EP - 167 VL - 457 UR - http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a7/ LA - en ID - ZNSL_2017_457_a7 ER -
W. Gangbo; J. Haskovec; P. Markowich; J. Sierra. An optimal transport approach for the kinetic Bohmian equation. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 25, Tome 457 (2017), pp. 114-167. http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a7/
[1] L. Ambrosio, N. Fusco, D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, 254, Clarendon Press Oxford, 2000 | MR
[2] L. Ambrosio, W. Gangbo, “Hamiltonian ODEs in the Wasserstein space of probability measures”, Commun. Pure Appl. Math., 61:1 (2008), 18–53 | DOI | MR | Zbl
[3] L. Ambrosio, N. Gigli, G. Savaré, Gradient flows: in metric spaces and in the space of probability measures, Springer Science Business Media, 2008 | MR
[4] L. Ambrosio, S. Lisini, G. Savaré, “Stability of flows associated to gradient vector fields and convergence of iterated transport maps”, Manuscripta Math., 121:1 (2006), 1–50 | DOI | MR | Zbl
[5] P. Cardaliaguet, J.-M. Lasry, P.-L. Lions, A. Porretta, “Long time average of mean field games with a nonlocal coupling”, Control and Optimization, SIAM, 51:5 (2013), 3558–3591 | DOI | MR | Zbl
[6] T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes, 10, Amer. Math. Soc., 2003 | MR | Zbl
[7] J. Cushing, S. Goldstein, A. Fine (eds.), Bohmian Mechanics and Quantum Theory: an appraisal, Boston Studies in the Philosophy of Science, 184, Springer Science Business Media, 2013 | MR
[8] D. Dèurr, S. Teufel, Bohmian Mechanics: The Physics and Mathematics of Quantum Theory, Springer, 2009 | MR
[9] W. Gangbo, H-K. Kim, T. Pacini, Differential forms on Wasserstein space and infinite-dimensional Hamiltonian systems, Memoirs of the AMS, 211, no. 993, 2011, vi+77 pp. | DOI | MR
[10] W. Gangbo, T. Nguyen, A. Tudorascu, “Hamilton–Jacobi equations in the Wasserstein space”, Methods Appl. Anal., 51:15 (2008), 155–183 | MR
[11] W. Gangbo, M. Westdickenberg, “Optimal transport for the system of isentropic Euler equations”, Commun. Partial Diff. Eqs., 34:9 (2009), 1041–1073 | DOI | MR | Zbl
[12] I. Gasser, P. Markowich, “Quantum hydrodynamics, Wigner transforms, the classical limit”, Asympt. Anal., 14:2 (1997), 97–116 | MR | Zbl
[13] U. Gianazza, G. Savaré, G. Toscani, “The Wasserstein gradient flow of the Fisher information and the quantum drift-diffusion equation”, Archive for Rational Mechanics and Analysis, 194:1 (2009), 133–220 | DOI | MR | Zbl
[14] E. Lieb, R. Seiringer, J. Yngvason, “Bosons in a trap: A rigorous derivation of the Gross–Pitaevskii energy functional”, The Stability of Matter: From Atoms to Stars, Springer, 2001, 685–697 | DOI | MR
[15] P. Markowich, T. Paul, C. Sparber, “Bohmian measures and their classical limit”, J. Funct. Anal., 259:6 (2010), 1542–1576 | DOI | MR | Zbl
[16] P. Markowich, T. Paul, C. Sparber, “On the dynamics of Bohmian measures”, Archive for Rational Mechanics and Analysis, 205:3 (2012), 1031–1054 | DOI | MR | Zbl
[17] D. Matthes, R. McCann, G. Savaré, “A family of nonlinear fourth order equations of gradient flow type”, Commun. Partial Diff. Eqs., 34:11 (2009), 1352–1397 | DOI | MR | Zbl
[18] F. Otto, The Geometry of Dissipative Evolution Equations: the Porous Medium Equation, Taylor and Francis, 2001 | MR
[19] K. Parthasarathy, Probability Measures on Metric Spaces, Amer. Math. Soc., 1967 | MR
[20] C. Sulem, P. Sulem, The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse, Ser. Applied Mathematical Sciences, 139, Springer Science Business Media, 1999 | MR | Zbl
[21] T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis, CBMS Regional Conference Series in Mathematics, 106, Amer. Math. Soc., 2006 | DOI | MR | Zbl
[22] A. W. van der Vaart, J. Wellner, Weak Convergence and Empirical Processes: With Applications to Statistics, Springer, 1996 | MR | Zbl
[23] C. Villani, Topics in Optimal Transportation, Ser. Graduate Studies in Math., 58, Amer. Math. Soc., 2003 | DOI | MR | Zbl
[24] F. Santambrogio, Optimal Transport for Applied Mathematicians, Progress in Nonlinear Differential Equations and their Applications, 87, Birkäuser, Springer, 2015 | DOI | MR | Zbl