An optimal transport approach for the kinetic Bohmian equation
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 25, Tome 457 (2017), pp. 114-167
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the existence theory of solutions of the kinetic Bohmian equation, a nonlinear Vlasov-type equation proposed for the phase-space formulation of Bohmian mechanics. Our main idea is to interpret the kinetic Bohmian equation as a Hamiltonian system defined on an appropriate Poisson manifold built on a Wasserstein space. We start by presenting an existence theory for stationary solutions of the kinetic Bohmian equation. Afterwards, we develop an approximative version of our Hamiltonian system in order to study its associated flow. We then prove existence of solutions of our approximative version. Finally, we present some convergence results for the approximative system, the aim being to establish that, in the limit, the approximative solution satisfies the kinetic Bohmian equation in a weak sense.
@article{ZNSL_2017_457_a7,
author = {W. Gangbo and J. Haskovec and P. Markowich and J. Sierra},
title = {An optimal transport approach for the kinetic {Bohmian} equation},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {114--167},
publisher = {mathdoc},
volume = {457},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a7/}
}
TY - JOUR AU - W. Gangbo AU - J. Haskovec AU - P. Markowich AU - J. Sierra TI - An optimal transport approach for the kinetic Bohmian equation JO - Zapiski Nauchnykh Seminarov POMI PY - 2017 SP - 114 EP - 167 VL - 457 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a7/ LA - en ID - ZNSL_2017_457_a7 ER -
W. Gangbo; J. Haskovec; P. Markowich; J. Sierra. An optimal transport approach for the kinetic Bohmian equation. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 25, Tome 457 (2017), pp. 114-167. http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a7/