An optimal transport approach for the kinetic Bohmian equation
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 25, Tome 457 (2017), pp. 114-167 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the existence theory of solutions of the kinetic Bohmian equation, a nonlinear Vlasov-type equation proposed for the phase-space formulation of Bohmian mechanics. Our main idea is to interpret the kinetic Bohmian equation as a Hamiltonian system defined on an appropriate Poisson manifold built on a Wasserstein space. We start by presenting an existence theory for stationary solutions of the kinetic Bohmian equation. Afterwards, we develop an approximative version of our Hamiltonian system in order to study its associated flow. We then prove existence of solutions of our approximative version. Finally, we present some convergence results for the approximative system, the aim being to establish that, in the limit, the approximative solution satisfies the kinetic Bohmian equation in a weak sense.
@article{ZNSL_2017_457_a7,
     author = {W. Gangbo and J. Haskovec and P. Markowich and J. Sierra},
     title = {An optimal transport approach for the kinetic {Bohmian} equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {114--167},
     year = {2017},
     volume = {457},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a7/}
}
TY  - JOUR
AU  - W. Gangbo
AU  - J. Haskovec
AU  - P. Markowich
AU  - J. Sierra
TI  - An optimal transport approach for the kinetic Bohmian equation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 114
EP  - 167
VL  - 457
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a7/
LA  - en
ID  - ZNSL_2017_457_a7
ER  - 
%0 Journal Article
%A W. Gangbo
%A J. Haskovec
%A P. Markowich
%A J. Sierra
%T An optimal transport approach for the kinetic Bohmian equation
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 114-167
%V 457
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a7/
%G en
%F ZNSL_2017_457_a7
W. Gangbo; J. Haskovec; P. Markowich; J. Sierra. An optimal transport approach for the kinetic Bohmian equation. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 25, Tome 457 (2017), pp. 114-167. http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a7/

[1] L. Ambrosio, N. Fusco, D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, 254, Clarendon Press Oxford, 2000 | MR

[2] L. Ambrosio, W. Gangbo, “Hamiltonian ODEs in the Wasserstein space of probability measures”, Commun. Pure Appl. Math., 61:1 (2008), 18–53 | DOI | MR | Zbl

[3] L. Ambrosio, N. Gigli, G. Savaré, Gradient flows: in metric spaces and in the space of probability measures, Springer Science Business Media, 2008 | MR

[4] L. Ambrosio, S. Lisini, G. Savaré, “Stability of flows associated to gradient vector fields and convergence of iterated transport maps”, Manuscripta Math., 121:1 (2006), 1–50 | DOI | MR | Zbl

[5] P. Cardaliaguet, J.-M. Lasry, P.-L. Lions, A. Porretta, “Long time average of mean field games with a nonlocal coupling”, Control and Optimization, SIAM, 51:5 (2013), 3558–3591 | DOI | MR | Zbl

[6] T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes, 10, Amer. Math. Soc., 2003 | MR | Zbl

[7] J. Cushing, S. Goldstein, A. Fine (eds.), Bohmian Mechanics and Quantum Theory: an appraisal, Boston Studies in the Philosophy of Science, 184, Springer Science Business Media, 2013 | MR

[8] D. Dèurr, S. Teufel, Bohmian Mechanics: The Physics and Mathematics of Quantum Theory, Springer, 2009 | MR

[9] W. Gangbo, H-K. Kim, T. Pacini, Differential forms on Wasserstein space and infinite-dimensional Hamiltonian systems, Memoirs of the AMS, 211, no. 993, 2011, vi+77 pp. | DOI | MR

[10] W. Gangbo, T. Nguyen, A. Tudorascu, “Hamilton–Jacobi equations in the Wasserstein space”, Methods Appl. Anal., 51:15 (2008), 155–183 | MR

[11] W. Gangbo, M. Westdickenberg, “Optimal transport for the system of isentropic Euler equations”, Commun. Partial Diff. Eqs., 34:9 (2009), 1041–1073 | DOI | MR | Zbl

[12] I. Gasser, P. Markowich, “Quantum hydrodynamics, Wigner transforms, the classical limit”, Asympt. Anal., 14:2 (1997), 97–116 | MR | Zbl

[13] U. Gianazza, G. Savaré, G. Toscani, “The Wasserstein gradient flow of the Fisher information and the quantum drift-diffusion equation”, Archive for Rational Mechanics and Analysis, 194:1 (2009), 133–220 | DOI | MR | Zbl

[14] E. Lieb, R. Seiringer, J. Yngvason, “Bosons in a trap: A rigorous derivation of the Gross–Pitaevskii energy functional”, The Stability of Matter: From Atoms to Stars, Springer, 2001, 685–697 | DOI | MR

[15] P. Markowich, T. Paul, C. Sparber, “Bohmian measures and their classical limit”, J. Funct. Anal., 259:6 (2010), 1542–1576 | DOI | MR | Zbl

[16] P. Markowich, T. Paul, C. Sparber, “On the dynamics of Bohmian measures”, Archive for Rational Mechanics and Analysis, 205:3 (2012), 1031–1054 | DOI | MR | Zbl

[17] D. Matthes, R. McCann, G. Savaré, “A family of nonlinear fourth order equations of gradient flow type”, Commun. Partial Diff. Eqs., 34:11 (2009), 1352–1397 | DOI | MR | Zbl

[18] F. Otto, The Geometry of Dissipative Evolution Equations: the Porous Medium Equation, Taylor and Francis, 2001 | MR

[19] K. Parthasarathy, Probability Measures on Metric Spaces, Amer. Math. Soc., 1967 | MR

[20] C. Sulem, P. Sulem, The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse, Ser. Applied Mathematical Sciences, 139, Springer Science Business Media, 1999 | MR | Zbl

[21] T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis, CBMS Regional Conference Series in Mathematics, 106, Amer. Math. Soc., 2006 | DOI | MR | Zbl

[22] A. W. van der Vaart, J. Wellner, Weak Convergence and Empirical Processes: With Applications to Statistics, Springer, 1996 | MR | Zbl

[23] C. Villani, Topics in Optimal Transportation, Ser. Graduate Studies in Math., 58, Amer. Math. Soc., 2003 | DOI | MR | Zbl

[24] F. Santambrogio, Optimal Transport for Applied Mathematicians, Progress in Nonlinear Differential Equations and their Applications, 87, Birkäuser, Springer, 2015 | DOI | MR | Zbl