On an exponential functional for Gaussian processes and its geometric foundations
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 25, Tome 457 (2017), pp. 101-113

Voir la notice de l'article provenant de la source Math-Net.Ru

After setting geometric notions, we revisit an exponential functional that has arisen in several contexts, with special attention to a set of geometric parameters and associated inequalities.
@article{ZNSL_2017_457_a6,
     author = {R. A. Vitale},
     title = {On an exponential functional for {Gaussian} processes and its geometric foundations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {101--113},
     publisher = {mathdoc},
     volume = {457},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a6/}
}
TY  - JOUR
AU  - R. A. Vitale
TI  - On an exponential functional for Gaussian processes and its geometric foundations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 101
EP  - 113
VL  - 457
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a6/
LA  - en
ID  - ZNSL_2017_457_a6
ER  - 
%0 Journal Article
%A R. A. Vitale
%T On an exponential functional for Gaussian processes and its geometric foundations
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 101-113
%V 457
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a6/
%G en
%F ZNSL_2017_457_a6
R. A. Vitale. On an exponential functional for Gaussian processes and its geometric foundations. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 25, Tome 457 (2017), pp. 101-113. http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a6/