@article{ZNSL_2017_457_a6,
author = {R. A. Vitale},
title = {On an exponential functional for {Gaussian} processes and its geometric foundations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {101--113},
year = {2017},
volume = {457},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a6/}
}
R. A. Vitale. On an exponential functional for Gaussian processes and its geometric foundations. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 25, Tome 457 (2017), pp. 101-113. http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a6/
[1] C. Borell, “On a certain exponential inequality for Gaussian processes”, Extremes, 9:3–4 (2006), 169–176 | MR | Zbl
[2] S. Chevet, “Processus gaussiens et volumes mixtes”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 36:1 (1976), 47–65 | DOI | MR | Zbl
[3] R. M. Dudley, “The sizes of compact subsets of Hilbert space and continuity of Gaussian processes”, J. Functional Analysis, 1 (1967), 290–330 | DOI | MR | Zbl
[4] X. Fernique, “Corps convexes et processus gaussiens de petit rang”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 35:4 (1976), 349–353 | DOI | MR | Zbl
[5] L. Gurvits, “A short proof, based on mixed volumes, of Liggett's theorem on the convolution of ultra-logconcave sequences”, Electron. J. Combin., 16:1 (2009), Note 5 | MR
[6] H. Hadwiger, Vorlesungen über Inhalt, Oberflache, und Isoperimetrie, Springer Verlag, Berlin, 1957 | MR | Zbl
[7] H. Hadwiger, “Das Wills'sche Funktional”, Monatsh. Math., 79 (1975), 213–221 | DOI | MR | Zbl
[8] H. Hadwiger, “Gitterpunktanzahl im Simplex und Willssche Vermutung”, Math. Ann., 239 (1979), 271–288 | DOI | MR | Zbl
[9] K. Itô, M. Nisio, “On the oscillation functions of Gaussian processes”, Math. Scand., 22 (1968), 209–223, (1969) | DOI | MR | Zbl
[10] D. A. Klain, “A short proof of Hadwiger's characterization theorem”, Mathematika, 42:2 (1995), 329–339 | DOI | MR | Zbl
[11] H. Le, “On bounded Gaussian processes”, Statist. Probab. Lett., 78 (2008), 669–674 | DOI | MR | Zbl
[12] M. Ledoux, The Concentration of Measure Phenomenon, American Mathematical Society, Providence, 2001 | MR | Zbl
[13] M. Ledoux, M. Talagrand, Probability in Banach Spaces, Springer-Verlag, New York, 1991 | MR | Zbl
[14] M. Lifshits, Gaussian Random Functions, Kluwer, Boston, 1995 | MR | Zbl
[15] T. M. Liggett, “Ultra logconcave sequences and negative dependence”, J. Combin. Theory Ser. A, 79 (1997), 315–325 | DOI | MR | Zbl
[16] P. McMullen, “Non-linear angle-sum relations for polyhedral cones and polytopes”, Math. Proc. Cambridge Philos. Soc., 78:2 (1975), 247–261 | DOI | MR | Zbl
[17] P. McMullen, “Inequalities between intrinsic volumes”, Monatsh. Math., 111:1 (1991), 47–53 | DOI | MR | Zbl
[18] R. Pemantle, “Towards a theory of negative dependence. Probabilistic techniques in equilibrium and nonequilibrium statistical physics”, J. Math. Phys., 41 (2000), 1371–1390 | DOI | MR | Zbl
[19] R. Schneider, Convex Bodies: the Brunn–Minkowski Theory, second ed., Cambridge University Press, New York, 2014 | MR | Zbl
[20] G. C. Shephard, “Inequalities between mixed volumes of convex sets”, Mathematika, 7 (1960), 125–138 | DOI | MR | Zbl
[21] V. N. Sudakov, “Gaussian random processes and the measures of solid angles in Hilbert space”, Dokl. Akad. Nauk SSSR, 197 (1971), 43–45 | MR | Zbl
[22] V. N. Sudakov, Geometric problems of the theory of infinite-dimensional probability distributions, Trudy Mat. Inst. Steklov, 141, 1976, 192 pp. | MR | Zbl
[23] V. N. Sudakov, Geometric problems in the theory of infinite-dimensional probability distributions, Cover to cover translation of Trudy Mat. Inst. Steklov, 141, 1976, Proc. Steklov Inst. Math., 141, no. 2, 1979, 178 pp. | MR
[24] B. S. Tsirel'son, “A geometric approach to maximum likelihood estimation for infinite-dimensional Gaussian location. I”, Theory Prob. Appl., 27:2 (1982), 411–418 | DOI | MR | Zbl
[25] B. S. Tsirel'son, “A geometric approach to maximum likelihood estimation for infinite-dimensional Gaussian location. II”, Theory Prob. Appl., 30:4 (1986), 820–828 | DOI | MR | Zbl
[26] B. S. Tsirel'son, “A geometric approach to maximum likelihood estimation for infinite-dimensional location. III”, Theory Prob. Appl., 31:3 (1986), 470–483 | DOI | MR | Zbl
[27] R. A. Vitale, “The Wills functional and Gaussian processes”, Ann. Probab., 24 (1996), 2172–2178 | DOI | MR | Zbl
[28] R. A. Vitale, “A log-concavity proof for a Gaussian exponential bound”, Advances in Stochastic Inequalities, Contemporary Math., 234, eds. T. P. Hill, C. Houdré, AMS, 1999, 209–212 | DOI | MR | Zbl
[29] R. A. Vitale, “Intrinsic volumes and Gaussian processes”, Adv. Appl. Prob., 33 (2001), 354–364 | DOI | MR | Zbl
[30] R. A. Vitale, “A question of geometry and probability”, A Festschrift for Herman Rubin, IMS Lecture Notes Monogr. Ser., 45, 2004, 337–341 | DOI | MR | Zbl
[31] R. A. Vitale, “On the Gaussian representation of intrinsic volumes”, Statist. Probab. Lett., 78 (2008), 1246–1249 | DOI | MR | Zbl
[32] J. M. Wills, “Zur Gitterpunktanzahl konvexer Mengen”, Elemente der Math., 28 (1973), 57–63 | MR | Zbl