@article{ZNSL_2017_457_a5,
author = {A. M. Vershik},
title = {Duality and free measures in vector spaces; spectral theory and the actions of non locally compact groups},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {74--100},
year = {2017},
volume = {457},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a5/}
}
TY - JOUR AU - A. M. Vershik TI - Duality and free measures in vector spaces; spectral theory and the actions of non locally compact groups JO - Zapiski Nauchnykh Seminarov POMI PY - 2017 SP - 74 EP - 100 VL - 457 UR - http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a5/ LA - ru ID - ZNSL_2017_457_a5 ER -
A. M. Vershik. Duality and free measures in vector spaces; spectral theory and the actions of non locally compact groups. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 25, Tome 457 (2017), pp. 74-100. http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a5/
[1] N. K. Bari, Trigonometricheskie ryady, FML, M., 1961 | MR
[2] A. M. Vershik, “Izmerimaya realizatsiya nepreryvnykh grupp avtomorfizmov unitarnogo koltsa”, Izv. AN SSSR, ser. matem., 29:1 (1965), 127–136 | MR | Zbl
[3] A. M. Vershik, “Dvoistvennost v teorii mery v lineinykh prostranstvakh”, DAN SSSR, 170 (1966), 497–500 | Zbl
[4] A. M. Vershik, “Dvoistvennost v teorii mery v lineinykh prostranstvakh”, Mezhdunar. matem. kongress, Sb., Tezisy nauchn. soobschenii. Sekts. 5, M., 1966, 39
[5] A. M. Vershik, “Aksiomatika teorii mery v lineinykh prostranstvakh”, DAN SSSR, 178:2 (1968), 278–281 | MR | Zbl
[6] A. M. Vershik, “Izmerimye realizatsii grupp avtomorfizmov i integralnye predstavleniya polozhitelnykh operatorov”, Sib. mat. zhurn., 28:1 (1987), 52–60 | MR | Zbl
[7] A. M. Vershik, “Teoriya filtratsii podalgebr, standartnost i nezavisimost”, UMN, 72:2 (2017), 67–146 | DOI | MR | Zbl
[8] A. M. Vershik, “Sluchainye i universalnye metricheskie prostranstva”, Fundamentalnaya matematika segodnya, Cb., K desyatiletiyu NMU, NMU, MTsNMO, M., 2003
[9] A. M. Vershik, V. N. Sudakov, “Veroyatnostnye mery v beskonechnomernykh prostranstvakh”, Zap. nauchn. semin. LOMI, 12, 1969, 7–67 | MR | Zbl
[10] I. M. Gelfand, M. I. Graev, N. Ya. Vilenkin, Integralnaya geometriya i svyazannye s nei voprosy teorii predstavlenii. Obobschennye funktsii, v. 5, Fizmatgiz, M., 1962 | MR
[11] L. N. Dovbysh, V. N. Sudakov, “O matritsakh Grama–de Finetti. Problemy teorii veroyatnostnykh raspredelenii”, Zap. nauchn. semin. LOMI, 119, 1982, 77–86 | MR | Zbl
[12] V. A. Rokhlin, “Ob osnovnykh ponyatiyakh teorii mery”, Matem. sb., 25(67):1 (1949), 107–150 | MR | Zbl
[13] A. V. Skorokhod, Integrirovanie v gilbertovom prostranstve, Nauka, M., 1975
[14] V. N. Sudakov, “Geometricheskie problemy teorii beskonechnomernykh veroyatnostnykh raspredelenii”, Tr. MIAN SSSR, 141, 1976, 3–191 | MR | Zbl
[15] G. E. Shilov, Fan Dyk Tin, Integral, mera, proizvodnaya na lineinykh prostranstvakh, Nauka, 1967 | MR
[16] E. Glasner, B. Tsirelson, B. Weiss, “The automorphism group of the Gaussian measure cannot act pointwise”, Israel Journal of Mathematics, 148 (2005), 305–329 | DOI | MR | Zbl
[17] S. Albeverio, R. Hoegh-Krohn, D. Testard, A. Vershik, “Factorial representations of path groups”, J. Funct. Anal., 51:1 (1983), 115–131 | DOI | MR | Zbl
[18] I. M. Gelfand, M. I. Graev, A. M. Vershik, “Representations of the group of functions taking values in a compact Lie group”, Compos. Math., 42:2 (1980), 217–243 | MR | Zbl
[19] G. W. Mackey, “Point realization of transformation groups”, Ill. J. Math., 6:2 (1962), 1927–1933 | MR
[20] A. Connes, J. Feldman, B. Weiss, “An amenable equivalence reltion is generated by single transformation”, Erg. Theor. Dyn. Syst., 1:4 (1981), 431–450 | DOI | MR | Zbl
[21] S. Thomas, “A descriptive view of unitary group representations”, J. European Math. Soc., 17:7 (2015), 1761–1787 | DOI | MR | Zbl
[22] S. Albeverio, B. K. Driver, M. Gordina, A. Vershik, “Equivalence of the Brownian and energy representations”, Zap. Nauchn. Semin. POMI, 441, 2015, 17–44 | MR
[23] I. M. Gelfand, M. I. Graev, A. M. Vershik, “Models of representations of current grups”, Representations of Lie groups and Lie algebras (Budapest, 1971), Akad. Kiadó, Budapest, 1985, 121–179 | MR