@article{ZNSL_2017_457_a3,
author = {S. G. Bobkov and G. P. Chistyakov and F. G\"otze},
title = {Gaussian mixtures and normal approximation for {V.} {N.~Sudakov's} typical distributions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {37--52},
year = {2017},
volume = {457},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a3/}
}
TY - JOUR AU - S. G. Bobkov AU - G. P. Chistyakov AU - F. Götze TI - Gaussian mixtures and normal approximation for V. N. Sudakov's typical distributions JO - Zapiski Nauchnykh Seminarov POMI PY - 2017 SP - 37 EP - 52 VL - 457 UR - http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a3/ LA - en ID - ZNSL_2017_457_a3 ER -
S. G. Bobkov; G. P. Chistyakov; F. Götze. Gaussian mixtures and normal approximation for V. N. Sudakov's typical distributions. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 25, Tome 457 (2017), pp. 37-52. http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a3/
[1] M. Anttila, K. Ball, I. Perissinaki, “The central limit problem for convex bodies”, Trans. Amer. Math. Soc., 355:12 (2003), 4723–4735 | DOI | MR | Zbl
[2] S. G. Bobkov, “On concentration of distributions of random weighted sums”, Ann. Probab., 31:1 (2003), 195–215 | DOI | MR | Zbl
[3] S. G. Bobkov, “Concentration of distributions of the weighted sums with Bernoullian coefficients”, Geometric aspects of functional analysis, Lecture Notes in Math., 1807, Springer, Berlin, 2003, 27–36 | DOI | MR | Zbl
[4] S. G. Bobkov, “Concentration of normalized sums and a central limit theorem for noncorrelated random variables”, Ann. Probab., 32:4 (2004), 2884–2907 | DOI | MR | Zbl
[5] Zap. Nauchn. Semin. POMI, 368, 2009, 59–74 (Russian) | DOI | MR | Zbl
[6] Theory Probab. Appl., 48:4 (2004), 604–621 | DOI | DOI | MR | Zbl
[7] S. G. Bobkov, F. Götze, “Concentration inequalities and limit theorems for randomized sums”, Probab. Theory Rel. Fields, 137:1–2 (2007), 49–81 | MR | Zbl
[8] S. G. Bobkov, A. Koldobsky, “On the central limit property of convex bodies”, Geometric aspects of functional analysis, Lecture Notes in Math., 1807, Springer, Berlin, 2003, 44–52 | DOI | MR | Zbl
[9] R. Eldan, B. Klartag, “Pointwise estimates for marginals of convex bodies”, J. Funct. Anal., 254:8 (2008), 2275–2293 | DOI | MR | Zbl
[10] I. A. Ibragimov, Yu. V. Linnik, Independent and Stationary Sequences of Random Variables, With a supplementary chapter by I. A. Ibragimov and V. V. Petrov. Translation from the Russian edited by J. F. C. Kingman, Wolters-Noordhoff Publishing, Groningen, 1971, 443 pp. | MR | Zbl
[11] B. Klartag, “A central limit theorem for convex sets”, Invent. Math., 168:1 (2007), 91–131 | DOI | MR | Zbl
[12] B. Klartag, “Power-law estimates for the central limit theorem for convex sets”, J. Funct. Anal., 245:1 (2007), 284–310 | DOI | MR | Zbl
[13] St. Petersburg Math. J., 19:1 (2008), 77–106 | DOI | MR | Zbl
[14] B. Klartag, “A Berry–Esseen type inequality for convex bodies with an unconditional basis”, Probab. Theory Rel. Fields, 145:1–2 (2009), 1–33 | DOI | MR | Zbl
[15] V. K. Matskyavichyus, “A lower bound for the rate of convergence in the central limit theorem”, Teor. Veroyatnost. i Primenen., 28:3 (1983), 565–569 (Russian) | MR | Zbl
[16] M. W. Meckes, “Gaussian marginals of convex bodies with symmetries”, Beiträge Algebra Geom., 50:1 (2009), 101–118 | MR | Zbl
[17] S. V. Nagaev, “On the distribution of linear functionals in finite-dimensional spaces of large dimension”, Dokl. Akad. Nauk SSSR, 263:2 (1982), 295–297 (Russian) | MR | Zbl
[18] S. Sodin, “Tail-sensitive Gaussian asymptotics for marginals of concentrated measures in high dimension”, Geometric aspects of functional analysis, Lecture Notes in Math., 1910, Springer, Berlin, 2007, 271–295 | DOI | MR | Zbl
[19] J. Math. Sci. (New York), 109:6 (2002), 2225–2228 | DOI | MR | Zbl
[20] Dokl. Akad. Nauk SSSR, 243:6 (1978), 1402–1405 | MR | Zbl
[21] J. Math. Sci. (New York), 88:1 (1998), 106–109 | DOI | MR | Zbl | Zbl
[22] H. von Weizsäcker, “Sudakov's typical marginals, random linear functionals and a conditional central limit theorem”, Probab. Theory Rel. Fields, 107 (1997), 313–324 | DOI | MR | Zbl