Large deviations for level sets of branching Brownian motion and Gaussian free fields
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 25, Tome 457 (2017), pp. 12-36
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We study deviation probabilities for the number of high positioned particles in branching Brownian motion, and confirm a conjecture of Derrida and Shi [10]. We also solve the corresponding problem for the two-dimensional discrete Gaussian free field. Our method relies on an elementary inequality for inhomogeneous Galton–Watson processes.
			
            
            
            
          
        
      @article{ZNSL_2017_457_a2,
     author = {E. A{\"\i}d\'ekon and Yueyun Hu and Zhan Shi},
     title = {Large deviations for level sets of branching {Brownian} motion and {Gaussian} free fields},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {12--36},
     publisher = {mathdoc},
     volume = {457},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a2/}
}
                      
                      
                    TY - JOUR AU - E. Aïdékon AU - Yueyun Hu AU - Zhan Shi TI - Large deviations for level sets of branching Brownian motion and Gaussian free fields JO - Zapiski Nauchnykh Seminarov POMI PY - 2017 SP - 12 EP - 36 VL - 457 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a2/ LA - en ID - ZNSL_2017_457_a2 ER -
E. Aïdékon; Yueyun Hu; Zhan Shi. Large deviations for level sets of branching Brownian motion and Gaussian free fields. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 25, Tome 457 (2017), pp. 12-36. http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a2/