@article{ZNSL_2017_457_a2,
author = {E. A{\"\i}d\'ekon and Yueyun Hu and Zhan Shi},
title = {Large deviations for level sets of branching {Brownian} motion and {Gaussian} free fields},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {12--36},
year = {2017},
volume = {457},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a2/}
}
TY - JOUR AU - E. Aïdékon AU - Yueyun Hu AU - Zhan Shi TI - Large deviations for level sets of branching Brownian motion and Gaussian free fields JO - Zapiski Nauchnykh Seminarov POMI PY - 2017 SP - 12 EP - 36 VL - 457 UR - http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a2/ LA - en ID - ZNSL_2017_457_a2 ER -
E. Aïdékon; Yueyun Hu; Zhan Shi. Large deviations for level sets of branching Brownian motion and Gaussian free fields. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 25, Tome 457 (2017), pp. 12-36. http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a2/
[1] J. D. Biggins, “The growth and spread of the general branching random walk”, Ann. Appl. Probab., 5 (1995), 1008–1024 | DOI | MR | Zbl
[2] M. Biskup, O. Louidor, On intermediate level sets of the two-dimensional discrete Gaussian free field, 2016, arXiv: 1612.01424
[3] E. Bolthausen, J.-D. Deuschel, G. Giacomin, “Entropic repulsion and the maximum of the two-dimensional harmonic crystal”, Ann. Probab., 29 (2001), 1670–1692 | DOI | MR | Zbl
[4] A. Bovier, Gaussian Processes on Trees. From Spin Glasses to Branching Brownian Motion, Cambridge University Press, Cambridge, 2017 | MR | Zbl
[5] M. D. Bramson, “Maximal displacement of branching Brownian motion”, Comm. Pure Appl. Math., 31 (1978), 531–581 | DOI | MR | Zbl
[6] M. D. Bramson, Convergence of solutions of the Kolmogorov equation to travelling waves, Mem. Amer. Math. Soc., 44, no. 285, 1983 | MR
[7] M. Bramson, J. Ding, O. Zeitouni, “Convergence in law of the maximum of the two-dimensional discrete Gaussian free field”, Commun. Pure Appl. Math., 69 (2016), 62–123 | DOI | MR | Zbl
[8] B. Chauvin, A. Rouault, “KPP equation and supercritical branching Brownian motion in the subcritical speed area. Application to spatial trees”, Probab. Theory Related Fields, 80 (1988), 299–314 | DOI | MR | Zbl
[9] O. Daviaud, “Extremes of the discrete two-dimensional Gaussian free field”, Ann. Probab., 34 (2006), 962–986 | DOI | MR | Zbl
[10] B. Derrida, Z. Shi, “Large deviations for the branching Brownian motion in presence of selection or coalescence”, J. Statist. Phys., 163 (2016), 1285–1311 | DOI | MR | Zbl
[11] R. A. Fisher, “The wave of advance of advantageous genes”, Ann. Human Genetics, 7 (1937), 355–369 | Zbl
[12] A. N. Kolmogorov, I. Petrovskii, N. Piskunov, “Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique”, Bull. Univ. Moscou Série internationale., Section A. Mathématiques et mécanique, 1 (1937), 1–25 | Zbl
[13] G. F. Lawler, Intersections of Random Walks, Birkhäuser, Boston, 1991 | MR | Zbl
[14] H. P. McKean, “Application of Brownian motion to the equation of Kolmogorov–Petrovskii–Piskunov”, Comm. Pure Appl. Math., 28 (1975), 323–331 ; “Erratum”, Comm. Pure Appl. Math., 29 (1976), 553–554 | DOI | MR | Zbl | DOI | MR | Zbl
[15] A. Rouault, “Large deviations and branching processes”, Proceedings of the 9th International Summer School on Probability Theory and Mathematical Statistics (Sozopol, 1997), Pliska Studia Mathematica Bulgarica, 13, 2000, 15–38 | MR