Large deviations for level sets of branching Brownian motion and Gaussian free fields
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 25, Tome 457 (2017), pp. 12-36

Voir la notice de l'article provenant de la source Math-Net.Ru

We study deviation probabilities for the number of high positioned particles in branching Brownian motion, and confirm a conjecture of Derrida and Shi [10]. We also solve the corresponding problem for the two-dimensional discrete Gaussian free field. Our method relies on an elementary inequality for inhomogeneous Galton–Watson processes.
@article{ZNSL_2017_457_a2,
     author = {E. A{\"\i}d\'ekon and Yueyun Hu and Zhan Shi},
     title = {Large deviations for level sets of branching {Brownian} motion and {Gaussian} free fields},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {12--36},
     publisher = {mathdoc},
     volume = {457},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a2/}
}
TY  - JOUR
AU  - E. Aïdékon
AU  - Yueyun Hu
AU  - Zhan Shi
TI  - Large deviations for level sets of branching Brownian motion and Gaussian free fields
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 12
EP  - 36
VL  - 457
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a2/
LA  - en
ID  - ZNSL_2017_457_a2
ER  - 
%0 Journal Article
%A E. Aïdékon
%A Yueyun Hu
%A Zhan Shi
%T Large deviations for level sets of branching Brownian motion and Gaussian free fields
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 12-36
%V 457
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a2/
%G en
%F ZNSL_2017_457_a2
E. Aïdékon; Yueyun Hu; Zhan Shi. Large deviations for level sets of branching Brownian motion and Gaussian free fields. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 25, Tome 457 (2017), pp. 12-36. http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a2/