Gaussian convex bodies: a non-asymptotic approach
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 25, Tome 457 (2017), pp. 286-316 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study linear images of a symmetric convex body $C\subseteq\mathbb R^N$ under an $n\times N$ Gaussian random matrix $G$, where $N\ge n$. Special cases include common models of Gaussian random polytopes and zonotopes. We focus on the intrinsic volumes of $GC$ and study the expectation, variance, small and large deviations from the mean, small ball probabilities, and higher moments. We discuss how the geometry of $C$, quantified through several different global parameters, affects such concentration properties. When $n=1$, $G$ is simply a $1\times N$ row vector and our analysis reduces to Gaussian concentration for norms. For matrices of higher rank and for natural families of convex bodies $C_N\subseteq\mathbb R^N$, with $N\to\infty$, we obtain new asymptotic results and take first steps to compare with the asymptotic theory.
@article{ZNSL_2017_457_a15,
     author = {G. Paouris and P. Pivovarov and P. Valettas},
     title = {Gaussian convex bodies: a~non-asymptotic approach},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {286--316},
     year = {2017},
     volume = {457},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a15/}
}
TY  - JOUR
AU  - G. Paouris
AU  - P. Pivovarov
AU  - P. Valettas
TI  - Gaussian convex bodies: a non-asymptotic approach
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 286
EP  - 316
VL  - 457
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a15/
LA  - en
ID  - ZNSL_2017_457_a15
ER  - 
%0 Journal Article
%A G. Paouris
%A P. Pivovarov
%A P. Valettas
%T Gaussian convex bodies: a non-asymptotic approach
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 286-316
%V 457
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a15/
%G en
%F ZNSL_2017_457_a15
G. Paouris; P. Pivovarov; P. Valettas. Gaussian convex bodies: a non-asymptotic approach. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 25, Tome 457 (2017), pp. 286-316. http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a15/

[1] S. Artstein-Avidan, A. Giannopoulos, V. D. Milman, Asymptotic Geometric Analysis, Part I, Mathematical Surveys and Monographs, 202, American Math. Soc., Providence, RI, 2015, XX+451 pp. | DOI | MR | Zbl

[2] F. Affentranger, “The convex hull of random points with spherically symmetric distributions”, Rend. Sem. Mat. Univ. Politec. Torino, 49:3 (1991), 359–383, (1993) | MR | Zbl

[3] T. W. Anderson, An Introduction to Multivariate Statistical Analysis, Wiley Series in Probability and Statistics, Third ed., Wiley-Interscience [John Wiley Sons], Hoboken, NJ, 2003, XX+721 pp. | MR | Zbl

[4] F. Affentranger, R. Schneider, “Random projections of regular simplices”, Discrete Comput. Geom., 7:3 (1992), 219–226 | DOI | MR | Zbl

[5] U. Betke, M. Henk, “Intrinsic volumes and lattice points of crosspolytopes”, Monatsh. Math., 115:1–2 (1993), 27–33 | DOI | MR | Zbl

[6] I. Bárány, M. Reitzner, “On the variance of random polytopes”, Adv. Math., 225:4 (2010), 1986–2001 | DOI | MR | Zbl

[7] I. Bárány, C. Thaele, Intrinsic volumes and Gaussian polytopes: the missing piece of the jigsaw, 2016, arXiv: 1606.07945 | MR

[8] Y. M. Baryshnikov, R. A. Vitale, “Regular simplices and Gaussian samples”, Discrete Comput. Geom., 11:2 (1994), 141–147 | DOI | MR | Zbl

[9] I. Bárány, V. Vu, “Central limit theorems for Gaussian polytopes”, Ann. Probab., 35:4 (2007), 1593–1621 | DOI | MR | Zbl

[10] S. Chatterjee, Superconcentration and Related Topics, Springer Monographs in Mathematics, 2014 | DOI | MR

[11] P. Calka, J. E. Yukich, “Variance asymptotics for random polytopes in smooth convex bodies”, Probab. Theory Related Fields, 158:1–2 (2014), 435–463 | DOI | MR | Zbl

[12] P. Calka, J. E. Yukich, “Variance asymptotics and scaling limits for Gaussian polytopes”, Probab. Theory Related Fields, 163:1–2 (2015), 259–301 | DOI | MR | Zbl

[13] N. Dafnis, A. Giannopoulos, A. Tsolomitis, “Quermaßintegrals and asymptotic shape of random polytopes in an isotropic convex body”, Michigan Math. J., 62:1 (2013), 59–79 | DOI | MR | Zbl

[14] V. H. de la Peña, E. Giné, Decoupling. From Dependence to Independence, Ser.: Springer Monographs in Mathematics, Springer Verlag, NY, 1999 | MR

[15] N. Dafnis, G. Paouris, “Estimates for the affine and dual affine quermassintegrals of convex bodies”, Illinois J. Math., 56:4 (2012), 1005–1021 | MR | Zbl

[16] E. D. Gluskin, “The diameter of the Minkowski compactum is roughly equal to $n$”, Funktsional. Anal. i Prilozhen. (Akademiya Nauk SSSR), 15:1 (1981), 72–73 | MR | Zbl

[17] D. Hug, M. Reitzner, “Gaussian polytopes: variances and limit theorems”, Adv. in Appl. Probab., 37:2 (2005), 297–320 | DOI | MR | Zbl

[18] B. Klartag, R. Vershynin, “Small ball probability and Dvoretzky's theorem”, Israel J. Math., 157 (2007), 193–207 | DOI | MR | Zbl

[19] Z. Kabluchko, D. Zaporozhets, Expected volumes of Gaussian polytopes, external angles, and multiple order statistics, Preprint, 2017, arXiv: 1706.08092

[20] A. Litvak, Around the simplex mean width conjecture, available at , 2017 http://www.math.ualberta.ca/~alexandr/OrganizedPapers/AL-simp-wv.pdf

[21] A. Lytova, K. Tikhomirov, The variance of the $\ell_p^n$-norm of the Gaussian vector, and Dvoretzky's theorem, arXiv: 1705.05052

[22] E. Lutwak, “A general isepiphanic inequality”, Proc. Amer. Math. Soc., 90:3 (1984), 415–421 | DOI | MR | Zbl

[23] E. Lutwak, “Inequalities for Hadwiger's harmonic Quermassintegrals”, Math. Ann., 280:1 (1988), 165–175 | DOI | MR | Zbl

[24] V. D. Milman, “A new proof of A. Dvoretzky's theorem on cross-sections of convex bodies”, Funkcional. Anal. i Priložen. (Akademija Nauk SSSR), 5:4 (1971), 28–37 | MR

[25] M. Meyer, A. Pajor, “Sections of the unit ball of $L^n_p$”, J. Funct. Anal., 80:1 (1988), 109–123 | DOI | MR | Zbl

[26] V. D. Milman, G. Schechtman, Asymptotic Theory of Finite-Dimensional Normed Spaces, With an appendix by M. Gromov, Lecture Notes in Mathematics, 1200, Springer-Verlag, Berlin, 1986 | MR | Zbl

[27] P. Mankiewicz, N. Tomczak-Jaegermann, “Quotients of finite-dimensional Banach spaces; random phenomena.”, Handbook of the geometry of Banach spaces, v. 2, North-Holland, Amsterdam, 2003, 1201–1246 | DOI | MR | Zbl

[28] G. Paouris, P. Pivovarov, “Small-ball probabilities for the volume of random convex sets”, Discrete Comput. Geom., 49:3 (2013), 601–646 | DOI | MR | Zbl

[29] G. Paouris, P. Pivovarov, P. Valettas, “On a quantitative reversal of Alexandrov's inequality”, Trans. Amer. Math. Soc. (to appear); 2017, arXiv: 1702.05762

[30] G. Paouris, P. Pivovarov, J. Zinn, “A central limit theorem for projections of the cube”, Probab. Theory Related Fields, 159:3–4 (2014), 701–719 | DOI | MR | Zbl

[31] G. Paouris, P. Valettas, “Neighborhoods on the Grassmannian of marginals with bounded isotropic constant”, J. Funct. Anal., 267:9 (2014), 3427–3443 | DOI | MR | Zbl

[32] G. Paouris, P. Valettas, On Dvoretzky's theorem for subspaces of $L_p$, Preprint, 2015, arXiv: 1510.07289

[33] G. Paouris, P. Valettas, “A Gaussian small deviation inequality for convex functions”, Ann. Probab. (to appear); 2016, arXiv: 1611.01723

[34] G. Paouris, P. Valettas, Variance estimates and almost Euclidean structure, Preprint, 2017, arXiv: 1703.10244

[35] G. Paouris, P. Valettas, J. Zinn, “Random version of Dvoretzky's theorem in $\ell_p^n$”, Stochastic Process. Appl., 127:10 (2017), 3187–3227 | DOI | MR | Zbl

[36] C. A. Rogers, G. C. Shephard, “The difference body of a convex body”, Arch. Math. (Basel), 8 (1957), 220–233 | DOI | MR | Zbl

[37] H. Rubin, R. A. Vitale, “Asymptotic distribution of symmetric statistics”, Ann. Statist., 8:1 (1980), 165–170 | DOI | MR | Zbl

[38] R. Schneider, Convex bodies: the Brunn–Minkowski theory, Encyclopedia of Mathematics and its Applications, 151, expanded, Cambridge University Press, Cambridge, 2014 | MR | Zbl

[39] R. J. Serfling, Approximation Theorems of Mathematical Statistics, Wiley Series in Probability and Mathematical Statistics, John Wiley Sons Inc., NY, 1980 | DOI | MR | Zbl

[40] V. N. Sudakov, Geometric problems of the theory of infinite-dimensional probability distributions, Trudy Mat. Inst. Steklov, 141, Akademiya Nauk SSSR, 1976, 192 pp. | MR | Zbl

[41] S. J. Szarek, “Nets of Grassmann manifold and orthogonal group”, Proceedings of research workshop on Banach space theory (Iowa City, Iowa, 1981), Univ. Iowa, Iowa City, IA, 1982, 169–185 | MR | Zbl

[42] B. S. Tsirelson, “A geometric approach to maximum likelihood estimation for an infinite-dimensional Gaussian location. II”, Teor. Veroyatnost. i Primenen., 30:4 (1985), 772–779 | MR | Zbl

[43] R. A. Vitale, “Symmetric statistics and random shape”, Proceedings of the 1st World Congress of the Bernoulli Society (Tashkent, 1986), v. 1, VNU Sci. Press, Utrecht, 1987, 595–600 | MR

[44] R. Vitale, “On the Gaussian representation of intrinsic volumes”, Statist. Probab. Lett., 78:10 (2008), 1246–1249 | DOI | MR | Zbl