@article{ZNSL_2017_457_a14,
author = {E. S. Meckes and M. W. Meckes},
title = {A sharp rate of convergence for the empirical spectral measure of a random unitary matrix},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {276--285},
year = {2017},
volume = {457},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a14/}
}
TY - JOUR AU - E. S. Meckes AU - M. W. Meckes TI - A sharp rate of convergence for the empirical spectral measure of a random unitary matrix JO - Zapiski Nauchnykh Seminarov POMI PY - 2017 SP - 276 EP - 285 VL - 457 UR - http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a14/ LA - en ID - ZNSL_2017_457_a14 ER -
E. S. Meckes; M. W. Meckes. A sharp rate of convergence for the empirical spectral measure of a random unitary matrix. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 25, Tome 457 (2017), pp. 276-285. http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a14/
[1] L. P. Arguin, D. Belius, P. Bourgade, “Maximum of the characteristic polynomial of random unitary matrices”, Comm. Math. Phys., 349 (2017), 703–751 | DOI | MR | Zbl
[2] G. Ben Arous, P. Bourgade, “Extreme gaps between eigenvalues of random matrices”, Ann. Probab, 41:4 (2013), 2648–2681 | DOI | MR | Zbl
[3] P. Bourgade, Personal communication
[4] S. Dallaporta, “Eigenvalue variance bounds for Wigner and covariance random matrices”, Random Matrices Theory Appl., 1:3 (2012), 1250007, 28 pp. | DOI | MR | Zbl
[5] S. Dallaporta, “Eigenvalue variance bounds for covariance matrices”, Markov Process. Related Fields, 21:1 (2015), 145–175 | MR | Zbl
[6] P. Diaconis, M. Shahshahani, “On the eigenvalues of random matrices”, J. Appl. Probab., 31A, Studies in Applied Probability (1994), 49–62 | DOI | MR | Zbl
[7] S. Ghosh, “Determinantal processes and completeness of random exponentials: the critical case”, Probab. Theory Related Fields, 163:3–4 (2015), 643–665 | DOI | MR | Zbl
[8] F. Goötze, A. A. Naumov, A. N. Tikhomirov, “Local semicircle law under moment conditions: Stieltjes transform rigidity and delocalization”, Teor. Veroyat. Primenen., 62:1 (2017), 72–103 | DOI | MR
[9] F. Hiai, D. Petz, “A large deviation theorem for the empirical eigenvalue distribution of random unitary matrices”, Ann. Inst. H. Poincaré Probab. Statist., 36:1 (2000), 71–85 | DOI | MR | Zbl
[10] J. B. Hough, M. Krishnapur, Y. Peres, B. Virág, “Determinantal processes and independence”, Probab. Surv., 3 (2006), 206–229 | DOI | MR | Zbl
[11] A. Kolmogoroff, “Über das Gesetz des iterierten Logarithmus”, Math. Ann., 101:1 (1929), 126–135 | DOI | MR | Zbl
[12] E. S. Meckes, M. W. Meckes, “Spectral measures of powers of random matrices”, Electron. Commun. Probab., 18 (2013), 78, 13 pp. | DOI | MR | Zbl
[13] E. S. Meckes, M. W. Meckes, “A rate of convergence for the circular law for the complex Ginibre ensemble”, Ann. Fac. Sci. Toulouse Math. (6), 24:1 (2015), 93–117 | DOI | MR | Zbl
[14] E. S. Meckes, M. W. Meckes, “Self-similarity in the circular unitary ensemble”, Discrete Anal., 2016, Paper No. 9, 15 pp. | MR | Zbl
[15] M. L. Mehta, Random Matrices, Pure and Applied Mathematics (Amsterdam), 142, third edition, Elsevier/Academic Press, Amsterdam, 2004 | MR | Zbl
[16] M. Talagrand, Upper and Lower Bounds for Stochastic Processes, Modern Methods and Classical Problems, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 60, Springer, Heidelberg, 2014 | MR | Zbl