A sharp rate of convergence for the empirical spectral measure of a random unitary matrix
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 25, Tome 457 (2017), pp. 276-285

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the convergence of the empirical spectral measures of random $N\times N$ unitary matrices. We give upper and lower bounds showing that the Kolmogorov distance between the spectral measure and the uniform measure on the unit circle is of the order $\log N/N$, both in expectation and almost surely. This implies in particular that the convergence happens more slowly for Kolmogorov distance than for the $L_1$-Kantorovich distance. The proof relies on the determinantal structure of the eigenvalue process.
@article{ZNSL_2017_457_a14,
     author = {E. S. Meckes and M. W. Meckes},
     title = {A sharp rate of convergence for the empirical spectral measure of a random unitary matrix},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {276--285},
     publisher = {mathdoc},
     volume = {457},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a14/}
}
TY  - JOUR
AU  - E. S. Meckes
AU  - M. W. Meckes
TI  - A sharp rate of convergence for the empirical spectral measure of a random unitary matrix
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 276
EP  - 285
VL  - 457
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a14/
LA  - en
ID  - ZNSL_2017_457_a14
ER  - 
%0 Journal Article
%A E. S. Meckes
%A M. W. Meckes
%T A sharp rate of convergence for the empirical spectral measure of a random unitary matrix
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 276-285
%V 457
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a14/
%G en
%F ZNSL_2017_457_a14
E. S. Meckes; M. W. Meckes. A sharp rate of convergence for the empirical spectral measure of a random unitary matrix. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 25, Tome 457 (2017), pp. 276-285. http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a14/