@article{ZNSL_2017_457_a13,
author = {A. E. Litvak and K. Tikhomirov},
title = {Estimates for order statistics in terms of quantiles},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {265--275},
year = {2017},
volume = {457},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a13/}
}
A. E. Litvak; K. Tikhomirov. Estimates for order statistics in terms of quantiles. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 25, Tome 457 (2017), pp. 265-275. http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a13/
[1] B. C. Arnold, N. Narayanaswamy, Relations, Bounds and Approximations for Order Statistics, Lecture Notes in Statistics, 53, Springer-Verlag., Berlin etc., 1989, x+173 pp. | DOI | MR | Zbl
[2] N. Balakrishnan, A. C. Cohen, Order Statistics and Inference, Academic Press, New York, 1991 | MR | Zbl
[3] H. A. David, H. N. Nagaraja, Order Statistics, Wiley Series in Probability and Statistics, 3rd ed., John Wiley Sons, Chichester, 2003 | DOI | MR | Zbl
[4] Y. Gordon, A. E. Litvak, S. Mendelson, A. Pajor, “Gaussian averages of interpolated bodies and applications to approximate reconstruction”, J. Approx. Theory, 149 (2007), 59–73 | DOI | MR | Zbl
[5] Y. Gordon, A. E. Litvak, C. Schütt, E. Werner, “Geometry of spaces between zonoids and polytopes”, Bull. Sci. Math., 126 (2002), 733–762 | DOI | MR | Zbl
[6] Y. Gordon, A. E. Litvak, C. Schütt, E. Werner, “Minima of sequences of Gaussian random variables”, C. R. Acad. Sci. Paris, Sér. I Math., 340 (2005), 445–448 | DOI | MR | Zbl
[7] Y. Gordon, A. E. Litvak, C. Schütt, E. Werner, “On the minimum of several random variables”, Proc. Amer. Math. Soc., 134 (2006), 3665–3675 | DOI | MR | Zbl
[8] Y. Gordon, A. E. Litvak, C. Schütt, E. Werner, “Uniform estimates for order statistics and Orlicz functions”, Positivity, 16 (2012), 1–28 | DOI | MR | Zbl
[9] W. Hoeffding, “On the distribution of the number of successes in independent trials”, Ann. Math. Statist., 27 (1956), 713–721 | DOI | MR | Zbl
[10] A. E. Litvak, K. Tikhomirov, “Order statistics of vectors with dependent coordinates and the Karhunen–Loeve basis”, Ann. Appl. Prob. (to appear)
[11] S. Mallat, O. Zeitouni, A conjecture concerning optimality of the Karhunen–Loéve basis in nonlinear reconstruction, arXiv: 1109.0489
[12] P. K. Sen, “A note on order statistics for heterogeneous distributions”, Ann. Math. Statist., 41 (1970), 2137–2139 | DOI | MR | Zbl