Estimates for order statistics in terms of quantiles
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 25, Tome 457 (2017), pp. 265-275 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $X_1,\dots, X_n$ be independent non-negative random variables with cumulative distribution functions $F_1,F_2,\dots,F_n$, each satisfying certain (rather mild) conditions. We show that the median of $k$-th smallest order statistic of the vector $(X_1,\dots,X_n)$ is equivalent to the quantile of order $(k-1/2)/n$ with respect to the averaged distribution $F=\frac1n\sum_{i=1}^n F_i$.
@article{ZNSL_2017_457_a13,
     author = {A. E. Litvak and K. Tikhomirov},
     title = {Estimates for order statistics in terms of quantiles},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {265--275},
     year = {2017},
     volume = {457},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a13/}
}
TY  - JOUR
AU  - A. E. Litvak
AU  - K. Tikhomirov
TI  - Estimates for order statistics in terms of quantiles
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 265
EP  - 275
VL  - 457
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a13/
LA  - en
ID  - ZNSL_2017_457_a13
ER  - 
%0 Journal Article
%A A. E. Litvak
%A K. Tikhomirov
%T Estimates for order statistics in terms of quantiles
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 265-275
%V 457
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a13/
%G en
%F ZNSL_2017_457_a13
A. E. Litvak; K. Tikhomirov. Estimates for order statistics in terms of quantiles. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 25, Tome 457 (2017), pp. 265-275. http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a13/

[1] B. C. Arnold, N. Narayanaswamy, Relations, Bounds and Approximations for Order Statistics, Lecture Notes in Statistics, 53, Springer-Verlag., Berlin etc., 1989, x+173 pp. | DOI | MR | Zbl

[2] N. Balakrishnan, A. C. Cohen, Order Statistics and Inference, Academic Press, New York, 1991 | MR | Zbl

[3] H. A. David, H. N. Nagaraja, Order Statistics, Wiley Series in Probability and Statistics, 3rd ed., John Wiley Sons, Chichester, 2003 | DOI | MR | Zbl

[4] Y. Gordon, A. E. Litvak, S. Mendelson, A. Pajor, “Gaussian averages of interpolated bodies and applications to approximate reconstruction”, J. Approx. Theory, 149 (2007), 59–73 | DOI | MR | Zbl

[5] Y. Gordon, A. E. Litvak, C. Schütt, E. Werner, “Geometry of spaces between zonoids and polytopes”, Bull. Sci. Math., 126 (2002), 733–762 | DOI | MR | Zbl

[6] Y. Gordon, A. E. Litvak, C. Schütt, E. Werner, “Minima of sequences of Gaussian random variables”, C. R. Acad. Sci. Paris, Sér. I Math., 340 (2005), 445–448 | DOI | MR | Zbl

[7] Y. Gordon, A. E. Litvak, C. Schütt, E. Werner, “On the minimum of several random variables”, Proc. Amer. Math. Soc., 134 (2006), 3665–3675 | DOI | MR | Zbl

[8] Y. Gordon, A. E. Litvak, C. Schütt, E. Werner, “Uniform estimates for order statistics and Orlicz functions”, Positivity, 16 (2012), 1–28 | DOI | MR | Zbl

[9] W. Hoeffding, “On the distribution of the number of successes in independent trials”, Ann. Math. Statist., 27 (1956), 713–721 | DOI | MR | Zbl

[10] A. E. Litvak, K. Tikhomirov, “Order statistics of vectors with dependent coordinates and the Karhunen–Loeve basis”, Ann. Appl. Prob. (to appear)

[11] S. Mallat, O. Zeitouni, A conjecture concerning optimality of the Karhunen–Loéve basis in nonlinear reconstruction, arXiv: 1109.0489

[12] P. K. Sen, “A note on order statistics for heterogeneous distributions”, Ann. Math. Statist., 41 (1970), 2137–2139 | DOI | MR | Zbl