On $\mathcal Z_p$-norms of random vectors
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 25, Tome 457 (2017), pp. 211-225
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			To any $n$-dimensional random vector $X$ we may associate its $L_p$-centroid body $\mathcal Z_p(X)$ and the corresponding norm. We formulate a conjecture concerning the bound on the $\mathcal Z_p(X)$-norm of $X$ and show that it holds under some additional symmetry assumptions. We also relate our conjecture with estimates of covering numbers and Sudakov-type minoration bounds.
			
            
            
            
          
        
      @article{ZNSL_2017_457_a11,
     author = {R. Lata{\l}a},
     title = {On $\mathcal Z_p$-norms of random vectors},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {211--225},
     publisher = {mathdoc},
     volume = {457},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a11/}
}
                      
                      
                    R. Latała. On $\mathcal Z_p$-norms of random vectors. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 25, Tome 457 (2017), pp. 211-225. http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a11/