On $\mathcal Z_p$-norms of random vectors
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 25, Tome 457 (2017), pp. 211-225 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

To any $n$-dimensional random vector $X$ we may associate its $L_p$-centroid body $\mathcal Z_p(X)$ and the corresponding norm. We formulate a conjecture concerning the bound on the $\mathcal Z_p(X)$-norm of $X$ and show that it holds under some additional symmetry assumptions. We also relate our conjecture with estimates of covering numbers and Sudakov-type minoration bounds.
@article{ZNSL_2017_457_a11,
     author = {R. Lata{\l}a},
     title = {On $\mathcal Z_p$-norms of random vectors},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {211--225},
     year = {2017},
     volume = {457},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a11/}
}
TY  - JOUR
AU  - R. Latała
TI  - On $\mathcal Z_p$-norms of random vectors
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 211
EP  - 225
VL  - 457
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a11/
LA  - en
ID  - ZNSL_2017_457_a11
ER  - 
%0 Journal Article
%A R. Latała
%T On $\mathcal Z_p$-norms of random vectors
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 211-225
%V 457
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a11/
%G en
%F ZNSL_2017_457_a11
R. Latała. On $\mathcal Z_p$-norms of random vectors. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 25, Tome 457 (2017), pp. 211-225. http://geodesic.mathdoc.fr/item/ZNSL_2017_457_a11/

[1] S. Artstein-Avidan, A. Giannopoulos, V. D. Milman, Asymptotic Geometric Analysis, Part I, Mathematical Surveys and Monographs, 202, American Mathematical Society, Providence, RI, 2015 | DOI | MR | Zbl

[2] S. Artstein, V. D. Milman, S. J. Szarek, “Duality of metric entropy”, Ann. Math., 159:2 (2004), 1313–1328 | DOI | MR | Zbl

[3] S. Bobkov, F. L. Nazarov, “On convex bodies and log-concave probability measures with unconditional basis”, Geometric Aspects of Functional Analysis, Lecture Notes in Math., 1807, Springer, Berlin, 2003, 53–69 | DOI | MR | Zbl

[4] S. Brazitikos, A. Giannopoulos, P. Valettas, B. H. Vritsiou, Geometry of Isotropic Convex Bodies, Mathematical Surveys and Monographs, 196, American Mathematical Society, Providence, RI, 2014 | DOI | MR | Zbl

[5] P. Hitczenko, “Domination inequality for martingale transforms of a Rademacher sequence”, Israel J. Math., 84 (1993), 161–178 | DOI | MR | Zbl

[6] R. Latała, “Weak and strong moments of random vectors”, Marcinkiewicz Centenary Volume, Banach Center Publ., 95, 2011, 115–121 | DOI | MR | Zbl

[7] R. Latała, “On some problems concerning log-concave random vectors”, Convexity and Concentration, IMA Vol. Math. Appl., 161, Springer 2017, 525–539 | DOI | Zbl

[8] M. Ledoux, M. Talagrand, Probability in Banach Spaces. Isoperimetry and Processes, Springer, Berlin, 1991 | MR | Zbl

[9] E. Lutvak, G. Zhang, “Blaschke–Santaló inequalities”, J. Differential Geom., 47 (1997), 1–16 | DOI | MR

[10] G. Paouris, “Concentration of mass on convex bodies”, Geom. Funct. Anal., 16 (2006), 1021–1049 | DOI | MR | Zbl

[11] V. N. Sudakov, “Gaussian measures, Cauchy measures and $\varepsilon$-entropy”, Soviet Math. Dokl., 10 (1969), 310–313 | Zbl