To the theory of operators that are bounded on cones in weighted spaces of numerical sequences, II
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 45, Tome 456 (2017), pp. 107-113 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We generalize earlier results on the interpolation property for triples of cones $(Q_0,Q_1,Q)$ ($Q_0,Q_1$, and $Q$ are cones in weighted spaces of numerical sequences) with respect to some triple of weighted spaces of numerical sequences.
@article{ZNSL_2017_456_a7,
     author = {V. M. Kaplitskii and A. K. Dronov},
     title = {To the theory of operators that are bounded on cones in weighted spaces of numerical {sequences,~II}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {107--113},
     year = {2017},
     volume = {456},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a7/}
}
TY  - JOUR
AU  - V. M. Kaplitskii
AU  - A. K. Dronov
TI  - To the theory of operators that are bounded on cones in weighted spaces of numerical sequences, II
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 107
EP  - 113
VL  - 456
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a7/
LA  - ru
ID  - ZNSL_2017_456_a7
ER  - 
%0 Journal Article
%A V. M. Kaplitskii
%A A. K. Dronov
%T To the theory of operators that are bounded on cones in weighted spaces of numerical sequences, II
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 107-113
%V 456
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a7/
%G ru
%F ZNSL_2017_456_a7
V. M. Kaplitskii; A. K. Dronov. To the theory of operators that are bounded on cones in weighted spaces of numerical sequences, II. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 45, Tome 456 (2017), pp. 107-113. http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a7/

[1] V. M. Kaplitskii, A. K. Dronov, “K teorii interpolyatsii operatorov, ogranichennykh na konusakh v vesovykh prostranstvakh chislovykh posledovatelnostei”, Zap. nauchn. semin. POMI, 424, 2014, 154–178 | MR

[2] V. M. Kaplitskii, “Interpolyatsiya nelineinykh operatorov v vesovykh $L_p$-prostranstvakh”, Sibirskii matematicheskii zhurnal, 51:2 (2010), 316–329 | MR | Zbl

[3] L. Maligranda, “Interpolation of Lipschitz for the pairs of spaces $(L^p,L^\infty)$”, Funct. Approx. Comment. Math., 9 (1980), 107–115 | MR | Zbl

[4] J. Cerda, H. Coll, “Function cones and interpolation”, Math. Nachr., 278 (2005), 227–239 | DOI | MR | Zbl

[5] A. K. Dronov, “O suschestvovanii bazisa v dopolnyaemom podprostranstve yadernogo prostranstva Kete iz klassa $(d_2)$”, Vladikavkazskii matematicheskii zhurnal, 18:1 (2016), 9–20 | MR