To the theory of operators that are bounded on cones in weighted spaces of numerical sequences,~II
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 45, Tome 456 (2017), pp. 107-113

Voir la notice de l'article provenant de la source Math-Net.Ru

We generalize earlier results on the interpolation property for triples of cones $(Q_0,Q_1,Q)$ ($Q_0,Q_1$, and $Q$ are cones in weighted spaces of numerical sequences) with respect to some triple of weighted spaces of numerical sequences.
@article{ZNSL_2017_456_a7,
     author = {V. M. Kaplitskii and A. K. Dronov},
     title = {To the theory of operators that are bounded on cones in weighted spaces of numerical {sequences,~II}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {107--113},
     publisher = {mathdoc},
     volume = {456},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a7/}
}
TY  - JOUR
AU  - V. M. Kaplitskii
AU  - A. K. Dronov
TI  - To the theory of operators that are bounded on cones in weighted spaces of numerical sequences,~II
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 107
EP  - 113
VL  - 456
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a7/
LA  - ru
ID  - ZNSL_2017_456_a7
ER  - 
%0 Journal Article
%A V. M. Kaplitskii
%A A. K. Dronov
%T To the theory of operators that are bounded on cones in weighted spaces of numerical sequences,~II
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 107-113
%V 456
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a7/
%G ru
%F ZNSL_2017_456_a7
V. M. Kaplitskii; A. K. Dronov. To the theory of operators that are bounded on cones in weighted spaces of numerical sequences,~II. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 45, Tome 456 (2017), pp. 107-113. http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a7/