To the theory of operators that are bounded on cones in weighted spaces of numerical sequences,~II
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 45, Tome 456 (2017), pp. 107-113
Voir la notice de l'article provenant de la source Math-Net.Ru
We generalize earlier results on the interpolation property for triples of cones $(Q_0,Q_1,Q)$ ($Q_0,Q_1$, and $Q$ are cones in weighted spaces of numerical sequences) with respect to some triple of weighted spaces of numerical sequences.
@article{ZNSL_2017_456_a7,
author = {V. M. Kaplitskii and A. K. Dronov},
title = {To the theory of operators that are bounded on cones in weighted spaces of numerical {sequences,~II}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {107--113},
publisher = {mathdoc},
volume = {456},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a7/}
}
TY - JOUR AU - V. M. Kaplitskii AU - A. K. Dronov TI - To the theory of operators that are bounded on cones in weighted spaces of numerical sequences,~II JO - Zapiski Nauchnykh Seminarov POMI PY - 2017 SP - 107 EP - 113 VL - 456 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a7/ LA - ru ID - ZNSL_2017_456_a7 ER -
%0 Journal Article %A V. M. Kaplitskii %A A. K. Dronov %T To the theory of operators that are bounded on cones in weighted spaces of numerical sequences,~II %J Zapiski Nauchnykh Seminarov POMI %D 2017 %P 107-113 %V 456 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a7/ %G ru %F ZNSL_2017_456_a7
V. M. Kaplitskii; A. K. Dronov. To the theory of operators that are bounded on cones in weighted spaces of numerical sequences,~II. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 45, Tome 456 (2017), pp. 107-113. http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a7/