@article{ZNSL_2017_456_a5,
author = {M. F. Gamal'},
title = {A sufficient condition for the similarity of a~polynomially bounded operator to a~contraction},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {77--95},
year = {2017},
volume = {456},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a5/}
}
M. F. Gamal'. A sufficient condition for the similarity of a polynomially bounded operator to a contraction. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 45, Tome 456 (2017), pp. 77-95. http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a5/
[1] C. Badea, “Perturbations of operators similar to contractions and the commutator equation”, Stud. Math., 150:3 (2002), 273–293 | DOI | MR | Zbl
[2] H. Bercovici, B. Prunaru, “Quasiaffine transforms of polynomially bounded operators”, Arch. Math. (Basel), 71 (1998), 384–387 | DOI | MR | Zbl
[3] J. Bourgain, “On the similarity problem for polynomially bounded operators on Hilbert space”, Isr. J. Math., 54 (1986), 227–241 | DOI | MR | Zbl
[4] G. Cassier, “Generalized Toeplitz operators, restrictions to invariant subspaces and similarity problems”, J. Oper. Theory, 53:1 (2005), 49–89 | MR | Zbl
[5] G. Cassier, J. Esterle, “Factorisation spatiale”, J. Oper. Theory, 62:1 (2009), 111–123 | MR | Zbl
[6] D. N. Clark, “Projectivity and lifting of Hilbert module maps”, Ann. Pol. Math., 66 (1997), 43–48 | DOI | MR | Zbl
[7] R. Clouâtre, “Similarity results for operators of class $C_0$ and the algebra $H^\infty(T)$”, Oper. Matrices, 8:2 (2014), 425–447 | MR | Zbl
[8] K. R. Davidson, V. I. Paulsen, “Polynomially bounded operators”, J. reine angew. Math., 487 (1997), 153–170 | MR | Zbl
[9] S. R. Foguel, “A counterexample to a problem of Sz.-Nagy”, Proc. Am. Math. Soc., 15 (1964), 788–790 | DOI | MR | Zbl
[10] M. F. Gamal', “Examples of cyclic polynomially bounded operators that are not similar to contractions”, Acta Sci. Math. (Szeged), 82 (2016), 597–628 | DOI | MR | Zbl
[11] P. R. Halmos, “On Foguel's answer to Nagy's question”, Proc. Am. Math. Soc., 15 (1964), 791–793 | MR | Zbl
[12] P. R. Halmos, “Ten problems in Hilbert space”, Bull. Am. Math. Soc., 76 (1970), 887–933 | DOI | MR | Zbl
[13] L. Kérchy, “Quasianalytic polynomially bounded operators”, Operator Theory: the State of the Art, Theta, Bucharest, 2016, 75–101 | MR
[14] A. Lebow, “A power-bounded operator that is not polynomially bounded”, Mich. Math. J., 15 (1968), 397–399 | DOI | MR | Zbl
[15] C. Le Merdy, “The similarity problem for bounded analytic semigroups on Hilbert space”, Semigroup Forum, 56:2 (1998), 205–224 | DOI | MR | Zbl
[16] Yu. Lyubich, “Spectral localization, power boundedness and invariant subspaces under Ritt's type condition”, Studia Math., 134:2 (1999), 153–167 | DOI | MR | Zbl
[17] W. Mlak, “Algebraic polynomially bounded operators”, Ann. Polon. Math., 29 (1974), 133–139 | DOI | MR | Zbl
[18] B. Nagy, J. Zemanek, “A resolvent condition implying power boundedness”, Stud. Math., 134:2 (1999), 143–151 | DOI | MR | Zbl
[19] N. K. Nikolskii, Lektsii ob operatore sdviga, Nauka, M., 1980 | MR
[20] N. K. Nikolski, Operators, functions, and systems: an easy reading, v. I, Math. Surveys and Monographs, 92, Hardy, Hankel, and Toeplitz, AMS, 2002 | MR | Zbl
[21] V. V. Peller, Hankel operators and their applications, Springer Monographs in Math., Springer, New York, 2003 | DOI | MR | Zbl
[22] G. Pisier, “A polynomially bounded operator on Hilbert space which is not similar to a contraction”, J. Am. Math. Soc., 10:2 (1997), 351–369 | DOI | MR | Zbl
[23] I. Singer, Bases in Banach spaces, v. I, Springer-Verlag VIII, Berlin–Heidelberg–New York, 1970 | MR | Zbl
[24] B. Sz.-Nagy, “Completely continuous operators with uniformly bounded iterates”, Publ. Math. Inst. Hung. Acad. Sci., 4 (1959), 89–93 | DOI | MR | Zbl
[25] B. Sz.-Nagy, C. Foias, H. Bercovici, L. Kérchy, Harmonic analysis of operators on Hilbert space, Springer, New York, 2010 | MR | Zbl
[26] V. I. Vasyunin, “Bezuslovno skhodyaschiesya spektralnye razlozheniya i zadachi interpolyatsii”, Tr. MIAN SSSR, 130, 1978, 5–49 | MR | Zbl
[27] P. Vitse, “Functional calculus under the Tadmor–Ritt condition, and free interpolation by polynomials of a given degree”, J. Funct. Anal., 210:1 (2004), 43–72 | DOI | MR | Zbl
[28] P. Vitse, “The Riesz turndown collar theorem giving an asymptotic estimate of the powers of an operator under the Ritt condition”, Rend. Circ. Mat. Palermo (2), 53:2 (2004), 283–312 | DOI | MR | Zbl