A sufficient condition for the similarity of a~polynomially bounded operator to a~contraction
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 45, Tome 456 (2017), pp. 77-95
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $T$ be a polynomially bounded operator, and let $\mathcal M$ be its invariant subspace. Suppose that $P_{\mathcal M^\perp}T|_{\mathcal M^\perp}$ is similar to a contraction, while $\theta(T|_\mathcal M)=0$, where $\theta$ is a finite product of Blaschke products with simple zeros satisfying the Carleson interpolating condition. Then $T$ is similar to a contraction. It is mentioned that Le Merdy's example shows that the assumption of polynomially boundedness cannot be replaced by the assumption of power boundedness.
@article{ZNSL_2017_456_a5,
author = {M. F. Gamal'},
title = {A sufficient condition for the similarity of a~polynomially bounded operator to a~contraction},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {77--95},
publisher = {mathdoc},
volume = {456},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a5/}
}
TY - JOUR AU - M. F. Gamal' TI - A sufficient condition for the similarity of a~polynomially bounded operator to a~contraction JO - Zapiski Nauchnykh Seminarov POMI PY - 2017 SP - 77 EP - 95 VL - 456 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a5/ LA - ru ID - ZNSL_2017_456_a5 ER -
M. F. Gamal'. A sufficient condition for the similarity of a~polynomially bounded operator to a~contraction. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 45, Tome 456 (2017), pp. 77-95. http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a5/