Sharp estimates of linear approximations by nonperiodic splines in terms of linear combinations of moduli of continuity
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 45, Tome 456 (2017), pp. 55-76
Voir la notice de l'article provenant de la source Math-Net.Ru
Suppose that $\sigma>0$, $r,\mu\in\mathbb N$, $\mu\geqslant r+1$, $r$ is odd, $p\in[1,+\infty]$, $f\in W^{(r)}_p(\mathbb R)$. We construct linear operators $\mathcal X_{\sigma,r,\mu}$ whose values are splines of degree $\mu$ and of minimal defect with knots $\frac{k\pi}\sigma$ ($k\in\mathbb Z$) such that
\begin{gather*}
\|f-\mathcal X_{\sigma,r,\mu}(f)\|_p\\
\leqslant\left(\frac\pi\sigma\right)^r\left\{\frac{A_{r,0}}2\omega_1\left(f^{(r)},\frac\pi\sigma\right)_p+\sum_{\nu=1}^{\mu-r-1}A_{r,\nu}\omega_\nu\left(f^{(r)},\frac\pi\sigma\right)_p\right\}\\
+\left(\frac\pi\sigma\right)^r\biggl( \frac{\mathcal K_r}{\pi^r}-\sum_{\nu=0}^{\mu-r-1}2^\nu A_{r,\nu}\biggr)2^{r-\mu}\omega_{\mu-r}\left(f^{(r)},\frac\pi\sigma\right)_p,
\end{gather*}
where for ${p=1,+\infty}$ the constants cannot be reduced on the class $W^{(r)}_p(\mathbb R)$. Here $\mathcal K_r=\frac4\pi\sum_{l=0}^\infty\frac{(-1)^{l(r+1)}}{(2l+1)^{r+1}}$ are the Favard constants, the constants $A_{r,\nu}$ are constructed explicitly, $\omega_\nu$ is a modulus of continuity of order $\nu$. As a corollary, we get the sharp Jackson type inequality
$$
\|f-\mathcal X_{\sigma,r,\mu}(f)\|_p\leqslant\frac{\mathcal K_r}{2\sigma^r}\omega_1\left(f^{(r)},\frac\pi\sigma\right)_p.
$$
@article{ZNSL_2017_456_a4,
author = {O. L. Vinogradov and A. V. Gladkaya},
title = {Sharp estimates of linear approximations by nonperiodic splines in terms of linear combinations of moduli of continuity},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {55--76},
publisher = {mathdoc},
volume = {456},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a4/}
}
TY - JOUR AU - O. L. Vinogradov AU - A. V. Gladkaya TI - Sharp estimates of linear approximations by nonperiodic splines in terms of linear combinations of moduli of continuity JO - Zapiski Nauchnykh Seminarov POMI PY - 2017 SP - 55 EP - 76 VL - 456 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a4/ LA - ru ID - ZNSL_2017_456_a4 ER -
%0 Journal Article %A O. L. Vinogradov %A A. V. Gladkaya %T Sharp estimates of linear approximations by nonperiodic splines in terms of linear combinations of moduli of continuity %J Zapiski Nauchnykh Seminarov POMI %D 2017 %P 55-76 %V 456 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a4/ %G ru %F ZNSL_2017_456_a4
O. L. Vinogradov; A. V. Gladkaya. Sharp estimates of linear approximations by nonperiodic splines in terms of linear combinations of moduli of continuity. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 45, Tome 456 (2017), pp. 55-76. http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a4/