Sharp estimates of linear approximations by nonperiodic splines in terms of linear combinations of moduli of continuity
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 45, Tome 456 (2017), pp. 55-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Suppose that $\sigma>0$, $r,\mu\in\mathbb N$, $\mu\geqslant r+1$, $r$ is odd, $p\in[1,+\infty]$, $f\in W^{(r)}_p(\mathbb R)$. We construct linear operators $\mathcal X_{\sigma,r,\mu}$ whose values are splines of degree $\mu$ and of minimal defect with knots $\frac{k\pi}\sigma$ ($k\in\mathbb Z$) such that \begin{gather*} \|f-\mathcal X_{\sigma,r,\mu}(f)\|_p\\ \leqslant\left(\frac\pi\sigma\right)^r\left\{\frac{A_{r,0}}2\omega_1\left(f^{(r)},\frac\pi\sigma\right)_p+\sum_{\nu=1}^{\mu-r-1}A_{r,\nu}\omega_\nu\left(f^{(r)},\frac\pi\sigma\right)_p\right\}\\ +\left(\frac\pi\sigma\right)^r\biggl( \frac{\mathcal K_r}{\pi^r}-\sum_{\nu=0}^{\mu-r-1}2^\nu A_{r,\nu}\biggr)2^{r-\mu}\omega_{\mu-r}\left(f^{(r)},\frac\pi\sigma\right)_p, \end{gather*} where for ${p=1,+\infty}$ the constants cannot be reduced on the class $W^{(r)}_p(\mathbb R)$. Here $\mathcal K_r=\frac4\pi\sum_{l=0}^\infty\frac{(-1)^{l(r+1)}}{(2l+1)^{r+1}}$ are the Favard constants, the constants $A_{r,\nu}$ are constructed explicitly, $\omega_\nu$ is a modulus of continuity of order $\nu$. As a corollary, we get the sharp Jackson type inequality $$ \|f-\mathcal X_{\sigma,r,\mu}(f)\|_p\leqslant\frac{\mathcal K_r}{2\sigma^r}\omega_1\left(f^{(r)},\frac\pi\sigma\right)_p. $$
@article{ZNSL_2017_456_a4,
     author = {O. L. Vinogradov and A. V. Gladkaya},
     title = {Sharp estimates of linear approximations by nonperiodic splines in terms of linear combinations of moduli of continuity},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {55--76},
     year = {2017},
     volume = {456},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a4/}
}
TY  - JOUR
AU  - O. L. Vinogradov
AU  - A. V. Gladkaya
TI  - Sharp estimates of linear approximations by nonperiodic splines in terms of linear combinations of moduli of continuity
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 55
EP  - 76
VL  - 456
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a4/
LA  - ru
ID  - ZNSL_2017_456_a4
ER  - 
%0 Journal Article
%A O. L. Vinogradov
%A A. V. Gladkaya
%T Sharp estimates of linear approximations by nonperiodic splines in terms of linear combinations of moduli of continuity
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 55-76
%V 456
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a4/
%G ru
%F ZNSL_2017_456_a4
O. L. Vinogradov; A. V. Gladkaya. Sharp estimates of linear approximations by nonperiodic splines in terms of linear combinations of moduli of continuity. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 45, Tome 456 (2017), pp. 55-76. http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a4/

[1] J. Favard, “Sur les meilleurs procédés d'approximation de certaines classes des fonctions par des polynomes trigonométriques”, Bull. de Sci. Math., 61 (1937), 209–224, 243–256 | Zbl

[2] N. I. Akhiezer, M. G. Krein, “O nailuchshem priblizhenii trigonometricheskimi summami differentsiruemykh periodicheskikh funktsii”, Doklady AN SSSR, 15:3 (1937), 107–112

[3] V. V. Zhuk, “O nekotorykh tochnykh neravenstvakh mezhdu nailuchshimi priblizheniyami i modulyami nepreryvnosti”, Sibirskii matematicheskii zhurnal, 12:6 (1971), 1283–1297

[4] A. A. Ligun, “O tochnykh konstantakh priblizheniya differentsiruemykh periodicheskikh funktsii”, Matematicheskie zametki, 14:1 (1973), 21–30 | MR | Zbl

[5] V. V. Zhuk, “K voprosu o postoyannykh v pryamykh teoremakh teorii approksimatsii dlya differentsiruemykh funktsii”, Vestnik Leningr. un-ta, 1976, no. 4(19), 51–57 | Zbl

[6] V. V. Zhuk, Approksimatsiya periodicheskikh funktsii, Izd. LGU, L., 1982 | MR

[7] M. G. Krein, “O nailuchshei approksimatsii nepreryvnykh differentsiruemykh funktsii na vsei veschestvennoi osi”, Doklady AN SSSR, 18:9 (1938), 619–623 | Zbl

[8] A. Yu. Gromov, “O tochnykh konstantakh priblizhenii tselymi funktsiyami differentsiruemykh funktsii”, Issledovaniya po sovremennym problemam summirovaniya i priblizheniya funktsii i ikh prilozheniyam, 7, Dnepropetrovsk, 1976, 17–21

[9] N. I. Merlina, Nekotorye tochnye otsenki dlya polunorm i nailuchshikh priblizhenii tselymi funktsiyami, Dep. 1257-79, 10 aprelya 1979

[10] N. I. Merlina, “K voprosu o tochnykh otsenkakh dlya polunorm i nailuchshikh priblizhenii tselymi funktsiyami”, Teoriya funktsii kompleksnogo peremennogo i kraevye zadachi, Sb., Cheboksary, 1979, 20–26 | Zbl

[11] O. L. Vinogradov, “Tochnye neravenstva tipa Dzheksona dlya priblizhenii klassov svertok tselymi funktsiyami konechnoi stepeni”, Algebra i analiz, 17:4 (2005), 59–114 | MR | Zbl

[12] O. L. Vinogradov, V. V. Zhuk, “Tochnye otsenki otklonenii lineinykh metodov priblizheniya periodicheskikh funktsii posredstvom lineinykh kombinatsii modulei nepreryvnosti razlichnykh poryadkov”, Problemy matematicheskogo analiza, 25, 2003, 57–98 | Zbl

[13] O. L. Vinogradov, “Analog summ Akhiezera–Kreina–Favara dlya periodicheskikh splainov minimalnogo defekta”, Problemy matematicheskogo analiza, 25, 2003, 29–56 | Zbl

[14] O. L. Vinogradov, A. V. Gladkaya, “Neperiodicheskii splainovyi analog operatorov Akhiezera–Kreina–Favara”, Zap. nauchn. semin. POMI, 440, 2015, 8–35 | MR

[15] A. V. Gladkaya, O. L. Vinogradov, “Sharp Jackson type inequalities for spline approximation on the axis”, Analysis Mathematica, 43:1 (2017), 27–47 | DOI | MR

[16] V. F. Babenko, N. P. Korneichuk, V. A. Kofanov, S. A. Pichugov, Neravenstva dlya proizvodnykh i ikh prilozheniya, Naukova dumka, Kiev, 2003

[17] N. P. Korneichuk, Tochnye konstanty v teorii priblizheniya, Nauka, M., 1987 | MR