On an equivalent norm on~$\mathrm{BMO}$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 45, Tome 456 (2017), pp. 37-54
Voir la notice de l'article provenant de la source Math-Net.Ru
We extand the inequality proved by S. V. Bochkarev to a larger class of convolution operators, assuming that the Fourier transforms of the kernels of these operators satisfy certain conditions in the spirit of the Hörmander–Mikhlin multiplier theorem. Therefore, we give a new characterization of $\mathrm{BMO}$.
@article{ZNSL_2017_456_a3,
author = {I. Vasilyev and A. Tselishchev},
title = {On an equivalent norm on~$\mathrm{BMO}$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {37--54},
publisher = {mathdoc},
volume = {456},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a3/}
}
I. Vasilyev; A. Tselishchev. On an equivalent norm on~$\mathrm{BMO}$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 45, Tome 456 (2017), pp. 37-54. http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a3/