On an equivalent norm on $\mathrm{BMO}$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 45, Tome 456 (2017), pp. 37-54
Cet article a éte moissonné depuis la source Math-Net.Ru
We extand the inequality proved by S. V. Bochkarev to a larger class of convolution operators, assuming that the Fourier transforms of the kernels of these operators satisfy certain conditions in the spirit of the Hörmander–Mikhlin multiplier theorem. Therefore, we give a new characterization of $\mathrm{BMO}$.
@article{ZNSL_2017_456_a3,
author = {I. Vasilyev and A. Tselishchev},
title = {On an equivalent norm on~$\mathrm{BMO}$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {37--54},
year = {2017},
volume = {456},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a3/}
}
I. Vasilyev; A. Tselishchev. On an equivalent norm on $\mathrm{BMO}$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 45, Tome 456 (2017), pp. 37-54. http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a3/
[1] L. Grafakos, Classical Fourier Analysis, 3 edition, Springer, 2014 | MR | Zbl
[2] L. Grafakos, Modern Fourier Analysis, 3 edition, Springer, 2014 | MR | Zbl
[3] Y. Han, D. Yang, “New characterization of $\mathrm{BMO}(\mathbb R^n)$ space”, Bol. Soc. Mat. Mexicana (3), 10 (2004), 95–103 | MR | Zbl
[4] S. V. Bochkarev, “Ryady Valle–Pussena v prostranstvakh $\mathrm{BMO}$, $L_1$, i $H^1(D)$, i multiplikativnye neravenstva”, Teoriya funktsii i differentsialnye uravneniya, Tr. MIAN, 210, Nauka, M., 1995, 41–64 | MR | Zbl
[5] S. V. Bochkarev, “Srednie Valle Pussena ryadov Fure dlya kvadratichnogo spektra i spektrov stepennoi plotnosti”, UMN, 69:1 (2014), 125–162 | DOI | MR | Zbl