$K$-closedness for weighted Hardy spaces on the torus~$\mathbb T^2$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 45, Tome 456 (2017), pp. 25-36
Voir la notice de l'article provenant de la source Math-Net.Ru
Certain sufficient conditions are established for the couple of weighted Hardy spaces $(H_r(w_1(\cdot,\cdot)),H_s(w_2(\cdot,\cdot)))$ on the two-dimensional torus $\mathbb T^2$ to be $K$-closed in the couple $(L_r(w_1(\cdot,\cdot)),L_s(w_2(\cdot,\cdot)))$. For $0$ the condition $w_1,w_2\in A_\infty$ suffices ($A_\infty$ is the Muckenhoupt condition over rectangles). For $0$ it suffices that $w_1\in A_\infty$, $w_2\in A_s$. For $1$, we assume that the weights are of the form $w_i(z_1,z_2)=a_i(z_1)u_i(z_1,z_2)b_i(z_2)$, and then the following conditions suffice: $u_1\in A_p$, $u_2\in A_1$, $u_2^pu_1\in A_\infty$, $\log a_i,\log b_i\in BMO$. The last statement generalizes the previously known result for the case of $u_i\equiv1$, $i=1,2$. Finally, for $r=1$, $s=\infty$, the conditions $w_1,w_2\in A_1$, $w_1w_2\in A_\infty$ suffice.
@article{ZNSL_2017_456_a2,
author = {V. A. Borovitskiy},
title = {$K$-closedness for weighted {Hardy} spaces on the torus~$\mathbb T^2$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {25--36},
publisher = {mathdoc},
volume = {456},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a2/}
}
V. A. Borovitskiy. $K$-closedness for weighted Hardy spaces on the torus~$\mathbb T^2$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 45, Tome 456 (2017), pp. 25-36. http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a2/