@article{ZNSL_2017_456_a2,
author = {V. A. Borovitskiy},
title = {$K$-closedness for weighted {Hardy} spaces on the torus~$\mathbb T^2$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {25--36},
year = {2017},
volume = {456},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a2/}
}
V. A. Borovitskiy. $K$-closedness for weighted Hardy spaces on the torus $\mathbb T^2$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 45, Tome 456 (2017), pp. 25-36. http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a2/
[1] D. V. Rutskii, “Vesovoe razlozhenie Kalderona–Zigmunda i nekotorye ego prilozheniya k interpolyatsii”, Zap. nauchn. sem. POMI, 424, 2014, 186–200 | MR
[2] Xu Quanhua, “Some properties of the quotient space $(L^1(\mathbf T^d)/H^1(D^d))$”, Illinois J. Math., 37:3 (1993), 437–454 | MR | Zbl
[3] J. García-Cuerva, K. Kazarian, “Calderón–Zygmund operators and unconditional bases of weighted Hardy spaces”, Stud. Math., 109:3 (1994), 255–276 | DOI | MR | Zbl
[4] S. V. Kislyakov, “Interpolation involving bounded bianalytic functions”, Operator Theory: Advances and Applications, 113 (2000), 135–149 | MR | Zbl
[5] S. V. Kislyakov, “Interpolation of $H_p$ spaces: some recent developments”, Israel Math. Conf. Proceedings, 13 (1999), 102–140 | MR | Zbl
[6] S. V. Kislyakov, Shu Kuankhua, “Veschestvennaya interpolyatsiya i singulyarnye integraly”, Algebra i analiz, 8:4 (1996), 75–109 | MR | Zbl
[7] D. Freitag, “Real interpolation of weighted $L_p$-spaces”, Math. Nachrichten, 86:1 (1978), 15–18 | DOI | MR | Zbl
[8] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, 1993 | MR | Zbl
[9] J. Bergh, J. Löfström, Interpolation Spaces, Springer, Berlin–Heidelberg, 1976 | Zbl
[10] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz, “Nauka”, Moskva, 1984 | MR
[11] K. Hoffman, Banach Spaces of Analytic Functions, Prentice Hall Inc., 1962 | MR | Zbl
[12] V. A. Borovitskii, K-zamknutost vesovykh prostranstv Khardi na $\mathbb T^2$, arXiv: 1707.05239