A extremal problem for the areas of images of disks
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 45, Tome 456 (2017), pp. 160-171
Voir la notice de l'article provenant de la source Math-Net.Ru
We study metric properties of the ring $Q$-homeomorphisms with respect to the $p$-modulus, $p>2$, in the complex plane and establish lower bounds for the areas of disks. The extremal problem concerning minimization of the area functional is also solved.
@article{ZNSL_2017_456_a13,
author = {R. R. Salimov and B. A. Klishchuk},
title = {A extremal problem for the areas of images of disks},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {160--171},
publisher = {mathdoc},
volume = {456},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a13/}
}
R. R. Salimov; B. A. Klishchuk. A extremal problem for the areas of images of disks. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 45, Tome 456 (2017), pp. 160-171. http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a13/