A extremal problem for the areas of images of disks
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 45, Tome 456 (2017), pp. 160-171 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study metric properties of the ring $Q$-homeomorphisms with respect to the $p$-modulus, $p>2$, in the complex plane and establish lower bounds for the areas of disks. The extremal problem concerning minimization of the area functional is also solved.
@article{ZNSL_2017_456_a13,
     author = {R. R. Salimov and B. A. Klishchuk},
     title = {A extremal problem for the areas of images of disks},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {160--171},
     year = {2017},
     volume = {456},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a13/}
}
TY  - JOUR
AU  - R. R. Salimov
AU  - B. A. Klishchuk
TI  - A extremal problem for the areas of images of disks
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 160
EP  - 171
VL  - 456
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a13/
LA  - ru
ID  - ZNSL_2017_456_a13
ER  - 
%0 Journal Article
%A R. R. Salimov
%A B. A. Klishchuk
%T A extremal problem for the areas of images of disks
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 160-171
%V 456
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a13/
%G ru
%F ZNSL_2017_456_a13
R. R. Salimov; B. A. Klishchuk. A extremal problem for the areas of images of disks. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 45, Tome 456 (2017), pp. 160-171. http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a13/

[1] A. Golberg, “Integrally quasiconformal mappings in space”, Zbirnik prats In-tu matematiki NANU, 7:2 (2010), 53–64 | Zbl

[2] R. Salimov, E. Sevost'yanov, “The Poletskii and Vaisala inequalities for the mappings with $(p,q)$-distortion”, Complex Variables and Elliptic Equations, 59:2 (2014), 217–231 | DOI | MR | Zbl

[3] R. R. Salimov, “Nizhnie otsenki $p$-modulya i otobrazheniya klassa Soboleva”, Algebra i analiz, 26:6 (2014), 143–171 | MR

[4] M. A. Lavrentev, Variatsionnyi metod v kraevykh zadachakh dlya sistem uravnenii ellipticheskogo tipa, M., 1962 | MR

[5] B. Bojarski, V. Gutlyanskii, O. Martio, V. Ryazanov, Infinitesimal geometry of quasiconformal and bi-Lipschitz mappings in the plane, EMS Tracts in Mathematics, 19, European Mathematical Society (EMS), Zurich, 2013, x+205 pp. | MR | Zbl

[6] T. V. Lomako, R. R. Salimov, “K teorii ekstremalnykh zadach”, Zbirnik prats In-tu matematiki NANU, 7:2 (2010), 264–269 | Zbl

[7] R. R. Salimov, “Ob otsenke mery obraza shara”, Sib. mat. zhurn., 53:4 (2012), 920–930 | MR | Zbl

[8] O. Martio, S. Rickman, J. Väisälä, “Definitions for quasiregular mappings”, Ann. Acad. Sci. Fenn. Ser. A1 Math., 448 (1969), 1–40 | MR

[9] V. A. Shlyk, “O ravenstve $p$-emkosti i $p$-modulya”, Sib. mat. zhurn., 34:6 (1993), 216–221 | MR | Zbl

[10] F. W. Gehring, “Lipschitz mappings and the $p$-capacity of ring in $n$-space”, Advances in the theory of Riemann surfaces, Proc. Conf. (Stonybrook, N.Y., 1969), Ann. of Math. Studies, 66, 1971, 175–193 | MR

[11] S. Saks, Teoriya integrala, Izd-vo inostr. lit., M., 1949