A extremal problem for the areas of images of disks
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 45, Tome 456 (2017), pp. 160-171

Voir la notice de l'article provenant de la source Math-Net.Ru

We study metric properties of the ring $Q$-homeomorphisms with respect to the $p$-modulus, $p>2$, in the complex plane and establish lower bounds for the areas of disks. The extremal problem concerning minimization of the area functional is also solved.
@article{ZNSL_2017_456_a13,
     author = {R. R. Salimov and B. A. Klishchuk},
     title = {A extremal problem for the areas of images of disks},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {160--171},
     publisher = {mathdoc},
     volume = {456},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a13/}
}
TY  - JOUR
AU  - R. R. Salimov
AU  - B. A. Klishchuk
TI  - A extremal problem for the areas of images of disks
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 160
EP  - 171
VL  - 456
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a13/
LA  - ru
ID  - ZNSL_2017_456_a13
ER  - 
%0 Journal Article
%A R. R. Salimov
%A B. A. Klishchuk
%T A extremal problem for the areas of images of disks
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 160-171
%V 456
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a13/
%G ru
%F ZNSL_2017_456_a13
R. R. Salimov; B. A. Klishchuk. A extremal problem for the areas of images of disks. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 45, Tome 456 (2017), pp. 160-171. http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a13/