Generalized pointwise Hölder type conditions of order less than two for an analytic function and its modulus
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 45, Tome 456 (2017), pp. 155-159 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The results of a recent paper by A. V. Vasin, S. V. Kislyakov, and the author on the relationship between the local boundary smoothness of an analytic function and local boundary smoothness of its modulus are extended to the case of generalized pointwise Hölder type conditions of order between one and two.
@article{ZNSL_2017_456_a12,
     author = {A. N. Medvedev},
     title = {Generalized pointwise {H\"older} type conditions of order less than two for an analytic function and its modulus},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {155--159},
     year = {2017},
     volume = {456},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a12/}
}
TY  - JOUR
AU  - A. N. Medvedev
TI  - Generalized pointwise Hölder type conditions of order less than two for an analytic function and its modulus
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 155
EP  - 159
VL  - 456
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a12/
LA  - ru
ID  - ZNSL_2017_456_a12
ER  - 
%0 Journal Article
%A A. N. Medvedev
%T Generalized pointwise Hölder type conditions of order less than two for an analytic function and its modulus
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 155-159
%V 456
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a12/
%G ru
%F ZNSL_2017_456_a12
A. N. Medvedev. Generalized pointwise Hölder type conditions of order less than two for an analytic function and its modulus. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 45, Tome 456 (2017), pp. 155-159. http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a12/

[1] V. K. Dzyadyk, I. A. Shevchuk, Theory of Uniform Approximation of Functions by Polynomials, Walter de Gruyter, 2008, 480 pp. | MR

[2] K. Hoffman, Banach spaces of analytic functions., Prentice Hall, Engelewood Cliffs, NJ, 1962 | MR | Zbl

[3] A. N. Medvedev, “Padenie gladkosti vneshnei funktsii v sravnenii s gladkostyu ee modulya pri dopolnitelnykh ogranicheniyakh na velichinu granichnoi funktsii”, Zap. nauchn. sem. POMI, 434, 2015, 101–115 | MR

[4] A. N. Medvedev, O gëlderovom uslovii v granichnoi tochke dlya analiticheskoi funktsii: obschie moduli gladkosti poryadka ne vyshe 2, Preprint No 4, POMI, 2017

[5] S. Spanne, “Some function spaces defined using the mean oscillation over cubes”, Annali della Scuola Normale Superiore di Pisa – Classe di Scienze, 19:4 (1965), 593–608 | MR | Zbl

[6] A. V. Vasin, S. V. Kislyakov, A. N. Medvedev, “Lokalnaya gladkost analiticheskoi funktsii v sravnenii s gladkostyu ee modulya”, Algebra i analiz, 25:3 (2013), 52–85 | MR | Zbl