@article{ZNSL_2017_456_a12,
author = {A. N. Medvedev},
title = {Generalized pointwise {H\"older} type conditions of order less than two for an analytic function and its modulus},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {155--159},
year = {2017},
volume = {456},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a12/}
}
TY - JOUR AU - A. N. Medvedev TI - Generalized pointwise Hölder type conditions of order less than two for an analytic function and its modulus JO - Zapiski Nauchnykh Seminarov POMI PY - 2017 SP - 155 EP - 159 VL - 456 UR - http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a12/ LA - ru ID - ZNSL_2017_456_a12 ER -
A. N. Medvedev. Generalized pointwise Hölder type conditions of order less than two for an analytic function and its modulus. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 45, Tome 456 (2017), pp. 155-159. http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a12/
[1] V. K. Dzyadyk, I. A. Shevchuk, Theory of Uniform Approximation of Functions by Polynomials, Walter de Gruyter, 2008, 480 pp. | MR
[2] K. Hoffman, Banach spaces of analytic functions., Prentice Hall, Engelewood Cliffs, NJ, 1962 | MR | Zbl
[3] A. N. Medvedev, “Padenie gladkosti vneshnei funktsii v sravnenii s gladkostyu ee modulya pri dopolnitelnykh ogranicheniyakh na velichinu granichnoi funktsii”, Zap. nauchn. sem. POMI, 434, 2015, 101–115 | MR
[4] A. N. Medvedev, O gëlderovom uslovii v granichnoi tochke dlya analiticheskoi funktsii: obschie moduli gladkosti poryadka ne vyshe 2, Preprint No 4, POMI, 2017
[5] S. Spanne, “Some function spaces defined using the mean oscillation over cubes”, Annali della Scuola Normale Superiore di Pisa – Classe di Scienze, 19:4 (1965), 593–608 | MR | Zbl
[6] A. V. Vasin, S. V. Kislyakov, A. N. Medvedev, “Lokalnaya gladkost analiticheskoi funktsii v sravnenii s gladkostyu ee modulya”, Algebra i analiz, 25:3 (2013), 52–85 | MR | Zbl