Generalized pointwise H\"older type conditions of order less than two for an analytic function and its modulus
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 45, Tome 456 (2017), pp. 155-159
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The results of a recent paper by A. V. Vasin, S. V. Kislyakov, and the author on the relationship between the local boundary smoothness of an analytic function and local boundary smoothness of its modulus are extended to the case of generalized pointwise Hölder type conditions of order between one and two.
			
            
            
            
          
        
      @article{ZNSL_2017_456_a12,
     author = {A. N. Medvedev},
     title = {Generalized pointwise {H\"older} type conditions of order less than two for an analytic function and its modulus},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {155--159},
     publisher = {mathdoc},
     volume = {456},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a12/}
}
                      
                      
                    TY - JOUR AU - A. N. Medvedev TI - Generalized pointwise H\"older type conditions of order less than two for an analytic function and its modulus JO - Zapiski Nauchnykh Seminarov POMI PY - 2017 SP - 155 EP - 159 VL - 456 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a12/ LA - ru ID - ZNSL_2017_456_a12 ER -
%0 Journal Article %A A. N. Medvedev %T Generalized pointwise H\"older type conditions of order less than two for an analytic function and its modulus %J Zapiski Nauchnykh Seminarov POMI %D 2017 %P 155-159 %V 456 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a12/ %G ru %F ZNSL_2017_456_a12
A. N. Medvedev. Generalized pointwise H\"older type conditions of order less than two for an analytic function and its modulus. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 45, Tome 456 (2017), pp. 155-159. http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a12/