On the existence of angular boundary values for polyharmonic functions in the unit ball
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 45, Tome 456 (2017), pp. 144-154
Voir la notice de l'article provenant de la source Math-Net.Ru
We study boundary properties of polyharmonic functions. In particular, a criterion is obtained (in terms of the radial growth of th derivative) for the existence a.e. of angular boundary values for a polyharmonic function bounded in the unit ball.
@article{ZNSL_2017_456_a11,
author = {M. Ya. Mazalov},
title = {On the existence of angular boundary values for polyharmonic functions in the unit ball},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {144--154},
publisher = {mathdoc},
volume = {456},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a11/}
}
TY - JOUR AU - M. Ya. Mazalov TI - On the existence of angular boundary values for polyharmonic functions in the unit ball JO - Zapiski Nauchnykh Seminarov POMI PY - 2017 SP - 144 EP - 154 VL - 456 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a11/ LA - ru ID - ZNSL_2017_456_a11 ER -
M. Ya. Mazalov. On the existence of angular boundary values for polyharmonic functions in the unit ball. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 45, Tome 456 (2017), pp. 144-154. http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a11/