.
@article{ZNSL_2017_456_a10,
author = {E. A. Lebedeva},
title = {Unconditional convergence for wavelet frame extensions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {135--143},
year = {2017},
volume = {456},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a10/}
}
E. A. Lebedeva. Unconditional convergence for wavelet frame extensions. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 45, Tome 456 (2017), pp. 135-143. http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a10/
[1] P. G. Casazza, O. Christensen, “Hilbert space frames containing Riesz basis and Banach spaces which have no subspace isomorphic to $c_0$”, J. Math. Anal. Appl., 202 (1996), 940–950 | DOI | MR | Zbl
[2] O. Christensen, An Introduction to Frames and Riesz Bases. Applied and Numerical Harmonic Analysis, Birkhäuser–Boston, 2016 | MR
[3] G. Gripenberg, “Wavelet bases in $L_p(\mathbb R)$”, Studia Math, 106:2 (1993), 175–187 | DOI | MR | Zbl
[4] I. Dobeshi, Desyat lektsii po veivletam, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2001
[5] E. M. Dynkin, B. P. Osilenker, “Vesovye otsenki singulyarnykh integralov i ikh prilozheniya”, Itogi nauki i tekhn. Ser. Mat. anal., 21, 1983, 42–129 | MR | Zbl
[6] T. Fiegel, P. Wojtaszczyk, “Special bases in functional spaces”, Handbook of the Geometry of Banach Spaces, v. 1, 2001, 561–597 | DOI | MR
[7] B. S. Kashin, A. A. Saakyan, Ortogonalnye ryady, ATsT, 1999 | MR
[8] A. Krivoshein, V. Protasov, M. Skopina, Multivariate wavelet frames, Springer, Singapore, 2016 | MR | Zbl
[9] Y. Meyer, Wavelets and Operators, Cambridge University Press, Cambridge, MA, 1992 | MR | Zbl
[10] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Teoriya vspleskov, Fizmatlit, 2005 | MR
[11] P. Wojtaszczyk, A Mathematical Introduction to Wavelets, Cambridge University Press, Cambridge, MA, 1997 | MR | Zbl
[12] P. Wojtaszczyk, “Wavelets as unconditional bases in $L_p(\mathbb R)$”, J. Fourier Anal., 5:1 (1999), 73–85 | DOI | MR | Zbl