Unconditional convergence for wavelet frame extensions
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 45, Tome 456 (2017), pp. 135-143

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\{\psi_{j,k}\}_{(j,k)\in\mathbb Z^2}$, $\{\widetilde\psi_{j,k}\}_{(j,k)\in\mathbb Z^2}$ be dual wavelet frames in $L_2(\mathbb R)$, let $\eta$ be an even, bounded, decreasing on $[0,\infty)$ function such that $$ \int_0^\infty\eta(x)\ln(1+x)\,dx\infty, $$ and $|\psi(x)|,|\widetilde\psi(x)|\le\eta(x)$. Then the series $\sum_{j,k\in\mathbb Z}(f,\widetilde\psi_{j,k})\psi_{j,k}$ converges unconditionally in $L_p(\mathbb R)$, $1$.
@article{ZNSL_2017_456_a10,
     author = {E. A. Lebedeva},
     title = {Unconditional convergence for wavelet frame extensions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {135--143},
     publisher = {mathdoc},
     volume = {456},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a10/}
}
TY  - JOUR
AU  - E. A. Lebedeva
TI  - Unconditional convergence for wavelet frame extensions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 135
EP  - 143
VL  - 456
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a10/
LA  - ru
ID  - ZNSL_2017_456_a10
ER  - 
%0 Journal Article
%A E. A. Lebedeva
%T Unconditional convergence for wavelet frame extensions
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 135-143
%V 456
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a10/
%G ru
%F ZNSL_2017_456_a10
E. A. Lebedeva. Unconditional convergence for wavelet frame extensions. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 45, Tome 456 (2017), pp. 135-143. http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a10/