On the radius of starlikeness for harmonic mappings
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 45, Tome 456 (2017), pp. 16-24 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the paper we obtain the criterion of starlikeness of the image of the disk with center at the origin and radius $r\in(0,1)$ under univalent harmonic mapping by a function, which maps the unit disk onto a convex domain. This criterion is analogous to the criterion of image convexity, and it is expressed in terms of starlikeness in one direction. As a corollary we obtain new estimate for the radius of starlikeness of the class of univalent harmonic mappings which map the unit disk onto a convex domain.
@article{ZNSL_2017_456_a1,
     author = {A. O. Bagapsh},
     title = {On the radius of starlikeness for harmonic mappings},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {16--24},
     year = {2017},
     volume = {456},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a1/}
}
TY  - JOUR
AU  - A. O. Bagapsh
TI  - On the radius of starlikeness for harmonic mappings
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 16
EP  - 24
VL  - 456
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a1/
LA  - ru
ID  - ZNSL_2017_456_a1
ER  - 
%0 Journal Article
%A A. O. Bagapsh
%T On the radius of starlikeness for harmonic mappings
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 16-24
%V 456
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a1/
%G ru
%F ZNSL_2017_456_a1
A. O. Bagapsh. On the radius of starlikeness for harmonic mappings. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 45, Tome 456 (2017), pp. 16-24. http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a1/

[1] P. Duren, Harmonic mappings in the plane, Cambridge Tracts in Math., 156, Cambridge Univ. Press, 2004 | MR | Zbl

[2] J. G. Clunie, T. Sheil-Small, “Harmonic univalent functions”, Ann. Acad. Sci. Fenn. Ser. AI, 9 (1984), 3–25 | MR | Zbl

[3] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR

[4] T. Sheil-Small, “Constants for planar harmonic mappings”, J. London Math. Soc., 42 (1990), 237–248 | DOI | MR | Zbl

[5] A. W. Goodman, E. B. Saff, “On univalent functions convex in one direction”, Proc. Amer. Math. Soc., 73 (1979), 183–187 | DOI | MR | Zbl

[6] St. Ruscheweyh, L. Salinas, “On the preservation of direction-convexity and the Goodman–Saff conjecture”, Ann. Acad. Sci. Fenn. Ser. AI, 14 (1989), 63–73 | MR | Zbl

[7] R. Nevanlinna, “Über die schlichten Abbildungen der Einheitskreises”, Oversckt av Finska Vet. Soc. Forth. (A), 62 (1919–1920), 1–14

[8] G.|M. Grunsky, “Zwei Bemerkungen zur konformen Abbildung”, Jahresber. deutsch. Math. Vereining, 43 (1934), 140–142

[9] D. Kalaj, S. Ponnusamy, M. Vuorinen, “Radius of close-to-convexity and fully starlikeness of harmonic mappings”, Complex variables and elliptic equations, 59:4 (2014), 539–552 | DOI | MR | Zbl

[10] O. R. Eilangoli, “Ob otsenke radiusa zvezdnosti v klassakh garmonicheskikh otobrazhenii”, Vestnik TvGU. Seriya: Prikladnaya matematika, 17 (2010), 133–140