@article{ZNSL_2017_456_a0,
author = {G. G. Amosov and A. S. Mokeev},
title = {Construction of anticliques for noncommutative operator graphs},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--15},
year = {2017},
volume = {456},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a0/}
}
G. G. Amosov; A. S. Mokeev. Construction of anticliques for noncommutative operator graphs. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 45, Tome 456 (2017), pp. 5-15. http://geodesic.mathdoc.fr/item/ZNSL_2017_456_a0/
[1] M. D. Choi, E. G. Effros, “Injectivity and operator spaces”, J. Funct. Anal., 24 (1977), 156–209 | DOI | MR | Zbl
[2] R. Duan, S. Severini, A. Winter, “Zero-error communication via quantum channels, noncommutative graphs and a quantum Lovasz theta function”, IEEE Trans. Inf. Theory, 59 (2013), 1164–1174 ; arXiv: 1002.2514 | DOI | MR | Zbl
[3] N. Weaver, “Quantum relations”, Mem. Amer. Math. Soc., 215, no. 1010, 2012, v-vi, 81–140 | MR
[4] E. Knill, R. Laflamme, “Theory of quantum error-correcting codes”, Phys. Rev. A, 55 (1997), 900–911 | DOI | MR
[5] E. Knill, R. Laflamme, L. Viola, “Theory of quantum error correction for general noise”, Phys. Rev. Lett., 84 (2000), 2525–2528 | DOI | MR | Zbl
[6] N. Weaver, A “quantum” Ramsey theorem for operator systems, 2016, arXiv: 1601.01259 | MR
[7] H. Tverberg, “A generalization of Radon's theorem”, J. London Math. Soc., 41 (1966), 123–128 | DOI | MR | Zbl
[8] H. Tverberg, “A generalization of Radon's theorem, II”, Bull. Austral. Math. Soc., 24 (1981), 321–325 | DOI | MR | Zbl
[9] P. Shor, “Scheme for reducing decoherence in quantum computer memory”, Phys. Rev. A, 52 (1995), R2493–R2496 | DOI
[10] U. Haagerup, “Orthogonal maximal abelian $*$-subalgebras of the $n\times n$ matrices and cyclic $n$-roots”, Operator Algebras and Quantum Field Theory (Rome, 1996), International Press, Cambridge, MA, 1997, 296–322 | MR | Zbl