On the congruence of prime integers
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 31, Tome 455 (2017), pp. 84-90
Cet article a éte moissonné depuis la source Math-Net.Ru
The article proposes an elementary necessary condition for prime integers of the form $8k+1$ to be congruent.
@article{ZNSL_2017_455_a7,
author = {B. B. Lur'e},
title = {On the congruence of prime integers},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {84--90},
year = {2017},
volume = {455},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a7/}
}
B. B. Lur'e. On the congruence of prime integers. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 31, Tome 455 (2017), pp. 84-90. http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a7/
[1] N. Koblits, Vvedenie v ellipticheskie krivye i modulyarnye formy, Mir, M., 1988 | MR
[2] V. V. Ostrik, M. F. Tsfasman, Algebraicheskaya geometriya i teoriya chisel: Ratsionalnye i ellipticheskie krivye, Biblioteka “Matematicheskoe prosveschenie”, 8, M., 2001
[3] K. Aierlend, M. Rouzen, Klassicheskoe vvedenie v sovremennuyu teoriyu chisel, Mir, M., 1987 | MR