On the congruence of prime integers
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 31, Tome 455 (2017), pp. 84-90 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The article proposes an elementary necessary condition for prime integers of the form $8k+1$ to be congruent.
@article{ZNSL_2017_455_a7,
     author = {B. B. Lur'e},
     title = {On the congruence of prime integers},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {84--90},
     year = {2017},
     volume = {455},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a7/}
}
TY  - JOUR
AU  - B. B. Lur'e
TI  - On the congruence of prime integers
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 84
EP  - 90
VL  - 455
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a7/
LA  - ru
ID  - ZNSL_2017_455_a7
ER  - 
%0 Journal Article
%A B. B. Lur'e
%T On the congruence of prime integers
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 84-90
%V 455
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a7/
%G ru
%F ZNSL_2017_455_a7
B. B. Lur'e. On the congruence of prime integers. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 31, Tome 455 (2017), pp. 84-90. http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a7/

[1] N. Koblits, Vvedenie v ellipticheskie krivye i modulyarnye formy, Mir, M., 1988 | MR

[2] V. V. Ostrik, M. F. Tsfasman, Algebraicheskaya geometriya i teoriya chisel: Ratsionalnye i ellipticheskie krivye, Biblioteka “Matematicheskoe prosveschenie”, 8, M., 2001

[3] K. Aierlend, M. Rouzen, Klassicheskoe vvedenie v sovremennuyu teoriyu chisel, Mir, M., 1987 | MR