On biorthogonal $p$-adic wavelet bases
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 31, Tome 455 (2017), pp. 67-83

Voir la notice de l'article provenant de la source Math-Net.Ru

Dual $p$-adic multiresolution analyses (MRAs) generated by scaling test functions are studied. It is proved that if two MRAs are dual, then each of MRAs is the Haar MRA. A characterization of all biorthogonal wavelet systems associated with the Haar MRA is given for the case $p=2$.
@article{ZNSL_2017_455_a6,
     author = {E. J. King and M. A. Skopina},
     title = {On biorthogonal $p$-adic wavelet bases},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {67--83},
     publisher = {mathdoc},
     volume = {455},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a6/}
}
TY  - JOUR
AU  - E. J. King
AU  - M. A. Skopina
TI  - On biorthogonal $p$-adic wavelet bases
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 67
EP  - 83
VL  - 455
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a6/
LA  - ru
ID  - ZNSL_2017_455_a6
ER  - 
%0 Journal Article
%A E. J. King
%A M. A. Skopina
%T On biorthogonal $p$-adic wavelet bases
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 67-83
%V 455
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a6/
%G ru
%F ZNSL_2017_455_a6
E. J. King; M. A. Skopina. On biorthogonal $p$-adic wavelet bases. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 31, Tome 455 (2017), pp. 67-83. http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a6/