Construction of cyclic extensions of degree $p^2$ for a complete field
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 31, Tome 455 (2017), pp. 52-66 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the present paper we embed a given cyclic extension of degree $p$ of a complete discrete valuation field of characteristic 0 with an arbitrary residue field of characteristic $p>0$ into a cyclic extension of degree $p^2$. The result extends the construction obtained by S. V. Vostokov and I. B. Zhukov in terms of Witt vectors, to a wider interval of values for the ramification jump of the original field extension.
@article{ZNSL_2017_455_a5,
     author = {I. Zhukov and E. Lysenko},
     title = {Construction of cyclic extensions of degree $p^2$ for a~complete field},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {52--66},
     year = {2017},
     volume = {455},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a5/}
}
TY  - JOUR
AU  - I. Zhukov
AU  - E. Lysenko
TI  - Construction of cyclic extensions of degree $p^2$ for a complete field
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 52
EP  - 66
VL  - 455
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a5/
LA  - ru
ID  - ZNSL_2017_455_a5
ER  - 
%0 Journal Article
%A I. Zhukov
%A E. Lysenko
%T Construction of cyclic extensions of degree $p^2$ for a complete field
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 52-66
%V 455
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a5/
%G ru
%F ZNSL_2017_455_a5
I. Zhukov; E. Lysenko. Construction of cyclic extensions of degree $p^2$ for a complete field. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 31, Tome 455 (2017), pp. 52-66. http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a5/

[1] I. B. Fesenko, S. V. Vostokov, Local fields and their extensions. A constructive approach, Second edition, AMS, Providence, RI, 2002 | MR

[2] M. Kurihara, “Abelian extensions of an absolutely unramified local field with general residue field”, Invent. Math., 93 (1988), 451–480 | DOI | MR | Zbl

[3] M. Kurihara, “Abelian extensions of absolutely unramified complete discrete valuation fields”, Invitation to Higher Local Fields, Geometry and Topology Monographs, 3, eds. I. Fesenko, M. Kurihara, 2000, 113–116 | DOI | MR | Zbl

[4] H. Miki, “On $\mathbb Z_p$-extensions of complete $p$-adic power series fields and function fields”, J. Fac. Sci. Univ. Tokyo Sect 1A, 21 (1974), 377–393 | MR | Zbl

[5] R. E. MacKenzie, G. Whaples, “Artin–Schreier equations in characteristic zero”, Amer. J. Math., 78 (1956), 473–485 | DOI | MR | Zbl

[6] S. V. Vostokov, I. B. Zhukov, “Nekotorye podkhody k postroeniyu abelevykh rasshirenii dlya $\frak p$-adicheskikh polei”, Trudy S.-Peterb. mat. obsch., 3, 1995, 194–214 | Zbl

[7] L. Xiao, I. Zhukov, “Ramification in the imperfect residue field case, approaches and questions”, Algebra i analiz, 26:5 (2014), 1–63 | MR

[8] I. B. Zhukov, “Strukturnaya teorema dlya polnykh polei”, Trudy S.-Peterb. mat. obsch., 3, 1995, 215–234 | MR | Zbl

[9] I. Zhukov, “Explicit abelian extensions of complete discrete valuation fields”, Invitation to Higher Local Fields, Geometry and Topology Monographs, 3, eds. I. Fesenko, M. Kurihara, 2000, 117–122 | DOI | MR | Zbl