Full and elementary nets over the quotient field of a~principal ideal ring
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 31, Tome 455 (2017), pp. 42-51

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $K$ be the quotient field of a principal ideal ring $R$, and $\sigma=(\sigma_{ij})$ be a full (elementary) net of order $n\geq2$ (respectively, $n\geq3$) over $K$ such that the additive subgroups $\sigma_{ij}$ are nonzero $R$-modules. It is proved that, up to conjugation by diagonal matrix, all $\sigma_{ij}$ are ideals of a fixed intermediate subring $P$, $R\subseteq P\subseteq K$.
@article{ZNSL_2017_455_a4,
     author = {R. Y. Dryaeva and V. A. Koibaev and Ya. N. Nuzhin},
     title = {Full and elementary nets over the quotient field of a~principal ideal ring},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {42--51},
     publisher = {mathdoc},
     volume = {455},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a4/}
}
TY  - JOUR
AU  - R. Y. Dryaeva
AU  - V. A. Koibaev
AU  - Ya. N. Nuzhin
TI  - Full and elementary nets over the quotient field of a~principal ideal ring
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 42
EP  - 51
VL  - 455
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a4/
LA  - ru
ID  - ZNSL_2017_455_a4
ER  - 
%0 Journal Article
%A R. Y. Dryaeva
%A V. A. Koibaev
%A Ya. N. Nuzhin
%T Full and elementary nets over the quotient field of a~principal ideal ring
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 42-51
%V 455
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a4/
%G ru
%F ZNSL_2017_455_a4
R. Y. Dryaeva; V. A. Koibaev; Ya. N. Nuzhin. Full and elementary nets over the quotient field of a~principal ideal ring. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 31, Tome 455 (2017), pp. 42-51. http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a4/