On a~strange homotopy category
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 31, Tome 455 (2017), pp. 33-41

Voir la notice de l'article provenant de la source Math-Net.Ru

For an additive category $\mathcal C$ in which each morphism has a kernel, it is proved that the homotopy category of the category of complexes over $\mathcal C$ which are concentrated in degrees 2,1,0 and are exact in degrees 2 and 1 is abelian. Under assumption that a category $\mathcal C$ is abelian, earlier this result was obtained by considering the heart of a suitable $t$-structure on the homotopy category of $\mathcal C$.
@article{ZNSL_2017_455_a3,
     author = {A. I. Generalov},
     title = {On a~strange homotopy category},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {33--41},
     publisher = {mathdoc},
     volume = {455},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a3/}
}
TY  - JOUR
AU  - A. I. Generalov
TI  - On a~strange homotopy category
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 33
EP  - 41
VL  - 455
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a3/
LA  - ru
ID  - ZNSL_2017_455_a3
ER  - 
%0 Journal Article
%A A. I. Generalov
%T On a~strange homotopy category
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 33-41
%V 455
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a3/
%G ru
%F ZNSL_2017_455_a3
A. I. Generalov. On a~strange homotopy category. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 31, Tome 455 (2017), pp. 33-41. http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a3/