On a strange homotopy category
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 31, Tome 455 (2017), pp. 33-41 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For an additive category $\mathcal C$ in which each morphism has a kernel, it is proved that the homotopy category of the category of complexes over $\mathcal C$ which are concentrated in degrees 2,1,0 and are exact in degrees 2 and 1 is abelian. Under assumption that a category $\mathcal C$ is abelian, earlier this result was obtained by considering the heart of a suitable $t$-structure on the homotopy category of $\mathcal C$.
@article{ZNSL_2017_455_a3,
     author = {A. I. Generalov},
     title = {On a~strange homotopy category},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {33--41},
     year = {2017},
     volume = {455},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a3/}
}
TY  - JOUR
AU  - A. I. Generalov
TI  - On a strange homotopy category
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 33
EP  - 41
VL  - 455
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a3/
LA  - ru
ID  - ZNSL_2017_455_a3
ER  - 
%0 Journal Article
%A A. I. Generalov
%T On a strange homotopy category
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 33-41
%V 455
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a3/
%G ru
%F ZNSL_2017_455_a3
A. I. Generalov. On a strange homotopy category. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 31, Tome 455 (2017), pp. 33-41. http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a3/

[1] E. Backelin, O. Jaramillo, “Auslander–Reiten sequences and $t$-structures on the homotopy category of an abelian category”, J. Algebra, 339:1 (2011), 80–96 | DOI | MR | Zbl

[2] A. A. Beilinson, J. Bernstein, J. Deligne, Faisceaux pervers, Astérisque, 100, 1982 | MR | Zbl

[3] S. I. Gelfand, Yu. I. Manin, Metody gomologicheskoi algebry, v. I, Nauka, M., 1988 | MR

[4] T. H. Fay, K. A. Hardie, P. J. Hilton, “The two-square lemma”, Publ. Mat., 33:1 (1989), 133–137 | DOI | MR | Zbl