Shift systems in local fields of zero characteristic
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 31, Tome 455 (2017), pp. 25-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the problem of constructing $L_2$ integrable functions on a local field of zero characteristic, whose shifts form an orthonormal system.
@article{ZNSL_2017_455_a2,
     author = {A. M. Vodolazov and S. F. Lukomskii},
     title = {Shift systems in local fields of zero characteristic},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {25--32},
     year = {2017},
     volume = {455},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a2/}
}
TY  - JOUR
AU  - A. M. Vodolazov
AU  - S. F. Lukomskii
TI  - Shift systems in local fields of zero characteristic
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 25
EP  - 32
VL  - 455
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a2/
LA  - ru
ID  - ZNSL_2017_455_a2
ER  - 
%0 Journal Article
%A A. M. Vodolazov
%A S. F. Lukomskii
%T Shift systems in local fields of zero characteristic
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 25-32
%V 455
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a2/
%G ru
%F ZNSL_2017_455_a2
A. M. Vodolazov; S. F. Lukomskii. Shift systems in local fields of zero characteristic. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 31, Tome 455 (2017), pp. 25-32. http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a2/

[1] S. V. Kozyrev, “Teoriya vspleskov kak $p$-adicheskii spektralnyi analiz”, Izv. RAN. Ser. mat., 66:2 (2002), 149–158 | DOI | MR | Zbl

[2] S. Albeverio, S. Evdokimov, M. Skopina, “$p$-Adic multiresolution analysis and wavelet frames”, J. Fourier Anal. Appl., 16:5 (2010), 693–714 | DOI | MR | Zbl

[3] S. Evdokimov, M. Skopina, “On orthogonal $p$-adic wavelet bases”, J. Math. Anal. and Appl., 424:2 (2015), 952–965 | DOI | MR | Zbl

[4] S. Evdokimov, “On non-compactly supported $p$-adic wavelets”, J. Math. Anal. and Appl., 443:2 (2016), 1260–1266 | DOI | MR | Zbl

[5] S. Evdokimov, “Kratnomasshtabnyi analiz i bazisy Khaara na koltse ratsionalnykh adelei”, Zap. nauchn. semin. POMI, 400, 2012, 158–165 | MR

[6] A. M. Vodolazov, S. F. Lukomskii, “Ortogonalnye sistemy sdvigov v pole $p$-adicheskikh chisel”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 14:3 (2016), 256–262 | DOI | MR

[7] Dzh. Kasselc, A. Frelikh (red.), Algebraicheskaya teoriya chisel, Iz-vo Mir, 1969