Subgroups of the general linear group containing the elementary subgroup over a~commutative ring extension of rank~2
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 31, Tome 455 (2017), pp. 209-225

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R=\prod_{i\in I}F_i$ be a direct product of fields and let $S=R[\sqrt d]=\prod_{i\in I}F_i[\sqrt{d_i}]$ be a ring extension of rank 2 of $R$. The subgroups of the general linear group $\operatorname{GL}(2n,R)$, $n\geq3$ that contain the elementary group $E(n,S)$ are described. It is shown that for every such a subgroup $H$ there exists a unique ideal $A\unlhd R$ such that $$ E(n,S)E(2n,R,A)\leq H\leq N_{\operatorname{GL}(2n,R)}(E(n,S)E(2n,R,A)). $$
@article{ZNSL_2017_455_a15,
     author = {T. N. Hoi and N. H. T. Nhat},
     title = {Subgroups of the general linear group containing the elementary subgroup over a~commutative ring extension of rank~2},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {209--225},
     publisher = {mathdoc},
     volume = {455},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a15/}
}
TY  - JOUR
AU  - T. N. Hoi
AU  - N. H. T. Nhat
TI  - Subgroups of the general linear group containing the elementary subgroup over a~commutative ring extension of rank~2
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 209
EP  - 225
VL  - 455
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a15/
LA  - en
ID  - ZNSL_2017_455_a15
ER  - 
%0 Journal Article
%A T. N. Hoi
%A N. H. T. Nhat
%T Subgroups of the general linear group containing the elementary subgroup over a~commutative ring extension of rank~2
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 209-225
%V 455
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a15/
%G en
%F ZNSL_2017_455_a15
T. N. Hoi; N. H. T. Nhat. Subgroups of the general linear group containing the elementary subgroup over a~commutative ring extension of rank~2. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 31, Tome 455 (2017), pp. 209-225. http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a15/