Nonclassical birational models for~$\operatorname{Spec}\mathbb Q$
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 31, Tome 455 (2017), pp. 181-196

Voir la notice de l'article provenant de la source Math-Net.Ru

We study generalized subrings of the ring of integers which give birational models for the field of rationals. A homogeneous strengthening of Evdokimov's theorem is proved. An approach to calculation of homotopy groups by means of generalized rings is proposed.
@article{ZNSL_2017_455_a13,
     author = {A. L. Smirnov},
     title = {Nonclassical birational models for~$\operatorname{Spec}\mathbb Q$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {181--196},
     publisher = {mathdoc},
     volume = {455},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a13/}
}
TY  - JOUR
AU  - A. L. Smirnov
TI  - Nonclassical birational models for~$\operatorname{Spec}\mathbb Q$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 181
EP  - 196
VL  - 455
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a13/
LA  - ru
ID  - ZNSL_2017_455_a13
ER  - 
%0 Journal Article
%A A. L. Smirnov
%T Nonclassical birational models for~$\operatorname{Spec}\mathbb Q$
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 181-196
%V 455
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a13/
%G ru
%F ZNSL_2017_455_a13
A. L. Smirnov. Nonclassical birational models for~$\operatorname{Spec}\mathbb Q$. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 31, Tome 455 (2017), pp. 181-196. http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a13/