@article{ZNSL_2017_455_a12,
author = {I. Ponomarenko and A. Vasil'ev},
title = {Testing isomorphism of central {Cayley} graphs over almost simple groups in polynomial time},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {154--180},
year = {2017},
volume = {455},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a12/}
}
TY - JOUR AU - I. Ponomarenko AU - A. Vasil'ev TI - Testing isomorphism of central Cayley graphs over almost simple groups in polynomial time JO - Zapiski Nauchnykh Seminarov POMI PY - 2017 SP - 154 EP - 180 VL - 455 UR - http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a12/ LA - en ID - ZNSL_2017_455_a12 ER -
I. Ponomarenko; A. Vasil'ev. Testing isomorphism of central Cayley graphs over almost simple groups in polynomial time. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 31, Tome 455 (2017), pp. 154-180. http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a12/
[1] L. Babai, W. Kantor, E. M. Luks, “Computational complexity and the classification of finite simple groups”, Proceedings of the 24th Ann. Symp. Found. Comput. Sci., 1983, 162–171
[2] J. Bray, J. Holt, D. Roney-Dougal, The Maximal Subgroups of the Low-Dimensional Finite Classical Groups, Cambridge University Press, Cambridge, 2013 | MR | Zbl
[3] P. J. Cameron, Permutation Groups, Cambridge University Press, 1999 | MR | Zbl
[4] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, An ATLAS of Finite Groups, Oxford University Press, Oxford, 1985 | MR
[5] F. Dalla Volta, A. Lucchini, “Generation of almost simple groups”, J. Algebra, 178:1 (1995), 194–223 | DOI | MR | Zbl
[6] S. Evdokimov, I. Ponomarenko, “Recognizing and isomorphism testing circulant graphs in polynomial time”, Algebra Analiz, 15:6 (2003), 1–34 | MR | Zbl
[7] S. Evdokimov, I. Ponomarenko, “Permutation group approach to association schemes”, Eur. J. Combin., 30 (2009), 1456–1476 | DOI | MR | Zbl
[8] S. Evdokimov, I. Ponomarenko, “Schurity of $S$-rings over a cyclic group and generalized wreath product of permutation groups”, Algebra Analiz, 24:3 (2012), 84–127 | MR | Zbl
[9] A. Ganesan, “Automorphism group of the complete transposition graph”, J. Algebr. Combin., 42:3 (2015), 793–801 | DOI | MR | Zbl
[10] C. H. Li, “On isomorphisms of finite Cayley graphs – a survey”, Discrete Math., 256 (2002), 301–334 | DOI | MR | Zbl
[11] M. W. Liebeck, Ch. E. Praeger, J. Saxl, Regular subgroups of primitive permutation groups, Memoirs Amer. Math. Soc., 203, no. 952, 2010, 88 pp. | DOI | MR
[12] E. M. Luks, “Isomorphism of graphs of bounded valence can be tested in polynomial time”, J. Comp. Sys. Sci., 25 (1982), 42–65 | DOI | MR | Zbl
[13] M. Muzychuk, “A solution of the isomorphism problem for circulant graphs”, Proc. London Math. Soc., 88 (2004), 1–41 | DOI | MR | Zbl
[14] I. Ponomarenko, “Bases of Schurian antisymmetric coherent configurations and isomorphism test for Schurian tournaments”, J. Math. Sci., 192:3 (2013), 316–338 | DOI | MR | Zbl
[15] B. Weisfeiler (editor), On Construction and Identification of Graphs, Lecture Notes Math., 558, 1976 | DOI | Zbl
[16] H. Wielandt, Finite Permutation Groups, Academic press, New York–London, 1964 | MR | Zbl
[17] H. Wielandt, Permutation Groups Through Invariant Relations and Invariant Functions, Lect. Notes, Dept. Math. Ohio St. Univ., Columbus, 1969