The normalizer of the elementary linear group of a~module arising under extension of the base ring
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 31, Tome 455 (2017), pp. 122-129
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $S$ be a commutative ring with $1$ and $R$ a unital subring. Let $M$ be a free $S$-module of rank $n\geq3$. In [1], V. A. Koibaev described the normalizer of $\operatorname{Aut}_S(M)$ in the group $\operatorname{Aut}_R(M)$. In this paper, we show that in $\operatorname{Aut}_R(M)$ the normalizer of the elementary linear group $E_\mathfrak B(M)$ coincides with the one of $\operatorname{Aut}_S(M)$, namely, $N_{\operatorname{Aut}_R(M)}(E_\mathfrak B(M))=\operatorname{Aut}(S/R)\ltimes\operatorname{Aut}_S(M)$. If $S$ is free of rank $m$ as an $R$-module, then $N_{\operatorname{GL}(mn,R)}(E(n,S))=\operatorname{Aut}(S/R)\ltimes\operatorname{GL}(n,S)$, moreover, for any proper ideal $A$ of $R$, we have
$$
N_{\operatorname{GL}(mn, R)}(E(n,S)E(mn,R,A))=\rho_A^{-1}(N_{\operatorname{GL}(mn,R/A)}(E(n,S/SA))).
$$
@article{ZNSL_2017_455_a10,
author = {N. H. T. Nhat and T. N. Hoi},
title = {The normalizer of the elementary linear group of a~module arising under extension of the base ring},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {122--129},
publisher = {mathdoc},
volume = {455},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a10/}
}
TY - JOUR AU - N. H. T. Nhat AU - T. N. Hoi TI - The normalizer of the elementary linear group of a~module arising under extension of the base ring JO - Zapiski Nauchnykh Seminarov POMI PY - 2017 SP - 122 EP - 129 VL - 455 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a10/ LA - en ID - ZNSL_2017_455_a10 ER -
%0 Journal Article %A N. H. T. Nhat %A T. N. Hoi %T The normalizer of the elementary linear group of a~module arising under extension of the base ring %J Zapiski Nauchnykh Seminarov POMI %D 2017 %P 122-129 %V 455 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a10/ %G en %F ZNSL_2017_455_a10
N. H. T. Nhat; T. N. Hoi. The normalizer of the elementary linear group of a~module arising under extension of the base ring. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 31, Tome 455 (2017), pp. 122-129. http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a10/