@article{ZNSL_2017_455_a10,
author = {N. H. T. Nhat and T. N. Hoi},
title = {The normalizer of the elementary linear group of a~module arising under extension of the base ring},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {122--129},
year = {2017},
volume = {455},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a10/}
}
TY - JOUR AU - N. H. T. Nhat AU - T. N. Hoi TI - The normalizer of the elementary linear group of a module arising under extension of the base ring JO - Zapiski Nauchnykh Seminarov POMI PY - 2017 SP - 122 EP - 129 VL - 455 UR - http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a10/ LA - en ID - ZNSL_2017_455_a10 ER -
N. H. T. Nhat; T. N. Hoi. The normalizer of the elementary linear group of a module arising under extension of the base ring. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 31, Tome 455 (2017), pp. 122-129. http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a10/
[1] V. A. Koibaev, “The normalizer of the automorphism group of a module arising under extension of the base ring”, Zap. Nauch. Semin. POMI, 211, 1994, 133–135 | MR | Zbl
[2] A. V. Stepanov, N. A. Vavilov, “Decomposition of transvections: a theme with variations”, K-Theory, 19 (2000), 109–153 | DOI | MR | Zbl
[3] N. A. Vavilov, V. A. Petrov, “On overgroups of $\mathrm{EO}(2l,R)$”, Zap. Nauch. Semin. POMI, 272, 2000, 68–85 | MR | Zbl
[4] N. A. Vavilov, V. A. Petrov, “On overgroups of $\mathrm{Ep}(2l,R)$”, Algebra Analiz, 15:4 (2003), 72–114 | MR | Zbl
[5] A. A. Suslin, “The structure of the special linear group over rings of polynomials”, Izv. Akad. N. Ser. Mat., 41:2 (1977), 235–252 | MR | Zbl
[6] A. J. Hahn, O. T. O'Meara, The Classical groups and K-theory, Springer, Berlin, 1989 | Zbl
[7] A. Bak, “Nonabelian $K$-theory: The nilpotent class of $K_1$ and general stability”, K-Theory, 4 (1991), 363–397 | DOI | Zbl
[8] A. V. Stepanov, “Structure of Chevalley groups over rings via universal localization”, J. Algebra, 450 (2016), 522–548 | DOI | Zbl
[9] A. V. Stepanov, “Subring subgroups in Chevalley groups with doubly laced root systems”, J. Algebra, 362 (2012), 12–29 | DOI | Zbl
[10] A. Bak, A. Stepanov, “Subring subgroups of symplectic groups in characteristic 2”, Algebra Analiz, 28:4 (2016), 47–61 | MR