The normalizer of the elementary linear group of a module arising under extension of the base ring
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 31, Tome 455 (2017), pp. 122-129 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $S$ be a commutative ring with $1$ and $R$ a unital subring. Let $M$ be a free $S$-module of rank $n\geq3$. In [1], V. A. Koibaev described the normalizer of $\operatorname{Aut}_S(M)$ in the group $\operatorname{Aut}_R(M)$. In this paper, we show that in $\operatorname{Aut}_R(M)$ the normalizer of the elementary linear group $E_\mathfrak B(M)$ coincides with the one of $\operatorname{Aut}_S(M)$, namely, $N_{\operatorname{Aut}_R(M)}(E_\mathfrak B(M))=\operatorname{Aut}(S/R)\ltimes\operatorname{Aut}_S(M)$. If $S$ is free of rank $m$ as an $R$-module, then $N_{\operatorname{GL}(mn,R)}(E(n,S))=\operatorname{Aut}(S/R)\ltimes\operatorname{GL}(n,S)$, moreover, for any proper ideal $A$ of $R$, we have $$ N_{\operatorname{GL}(mn, R)}(E(n,S)E(mn,R,A))=\rho_A^{-1}(N_{\operatorname{GL}(mn,R/A)}(E(n,S/SA))). $$
@article{ZNSL_2017_455_a10,
     author = {N. H. T. Nhat and T. N. Hoi},
     title = {The normalizer of the elementary linear group of a~module arising under extension of the base ring},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {122--129},
     year = {2017},
     volume = {455},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a10/}
}
TY  - JOUR
AU  - N. H. T. Nhat
AU  - T. N. Hoi
TI  - The normalizer of the elementary linear group of a module arising under extension of the base ring
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 122
EP  - 129
VL  - 455
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a10/
LA  - en
ID  - ZNSL_2017_455_a10
ER  - 
%0 Journal Article
%A N. H. T. Nhat
%A T. N. Hoi
%T The normalizer of the elementary linear group of a module arising under extension of the base ring
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 122-129
%V 455
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a10/
%G en
%F ZNSL_2017_455_a10
N. H. T. Nhat; T. N. Hoi. The normalizer of the elementary linear group of a module arising under extension of the base ring. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 31, Tome 455 (2017), pp. 122-129. http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a10/

[1] V. A. Koibaev, “The normalizer of the automorphism group of a module arising under extension of the base ring”, Zap. Nauch. Semin. POMI, 211, 1994, 133–135 | MR | Zbl

[2] A. V. Stepanov, N. A. Vavilov, “Decomposition of transvections: a theme with variations”, K-Theory, 19 (2000), 109–153 | DOI | MR | Zbl

[3] N. A. Vavilov, V. A. Petrov, “On overgroups of $\mathrm{EO}(2l,R)$”, Zap. Nauch. Semin. POMI, 272, 2000, 68–85 | MR | Zbl

[4] N. A. Vavilov, V. A. Petrov, “On overgroups of $\mathrm{Ep}(2l,R)$”, Algebra Analiz, 15:4 (2003), 72–114 | MR | Zbl

[5] A. A. Suslin, “The structure of the special linear group over rings of polynomials”, Izv. Akad. N. Ser. Mat., 41:2 (1977), 235–252 | MR | Zbl

[6] A. J. Hahn, O. T. O'Meara, The Classical groups and K-theory, Springer, Berlin, 1989 | Zbl

[7] A. Bak, “Nonabelian $K$-theory: The nilpotent class of $K_1$ and general stability”, K-Theory, 4 (1991), 363–397 | DOI | Zbl

[8] A. V. Stepanov, “Structure of Chevalley groups over rings via universal localization”, J. Algebra, 450 (2016), 522–548 | DOI | Zbl

[9] A. V. Stepanov, “Subring subgroups in Chevalley groups with doubly laced root systems”, J. Algebra, 362 (2012), 12–29 | DOI | Zbl

[10] A. Bak, A. Stepanov, “Subring subgroups of symplectic groups in characteristic 2”, Algebra Analiz, 28:4 (2016), 47–61 | MR