On the reduced group of principal units in cyclic extensions of local fields
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 31, Tome 455 (2017), pp. 14-24 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper, the structure of reduced group of main units of cyclic extensions of local fields as a Galois module is studied by examining the Jordan canonical form of the generating automorphism of Galois group.
@article{ZNSL_2017_455_a1,
     author = {T. Hakobyan},
     title = {On the reduced group of principal units in cyclic extensions of local fields},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {14--24},
     year = {2017},
     volume = {455},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a1/}
}
TY  - JOUR
AU  - T. Hakobyan
TI  - On the reduced group of principal units in cyclic extensions of local fields
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 14
EP  - 24
VL  - 455
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a1/
LA  - en
ID  - ZNSL_2017_455_a1
ER  - 
%0 Journal Article
%A T. Hakobyan
%T On the reduced group of principal units in cyclic extensions of local fields
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 14-24
%V 455
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a1/
%G en
%F ZNSL_2017_455_a1
T. Hakobyan. On the reduced group of principal units in cyclic extensions of local fields. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 31, Tome 455 (2017), pp. 14-24. http://geodesic.mathdoc.fr/item/ZNSL_2017_455_a1/

[1] D. K. Faddeev, “On the structure of the reduced multiplicative group of a cyclic extension of a local field”, Izv. Akad. Nauk SSSR Ser. Mat., 24:2 (1960), 145–152 | MR | Zbl

[2] J. Neukirch, Algebraic number theory, Springer, 1999 | MR | Zbl

[3] K. Iwasawa, Local class field theory, Oxford University Press, 1986 | MR | Zbl

[4] H. Hasse, Number theory, Springer, 1980 | MR | Zbl