Estimation of the tail of probability distribution through its characteristic function
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 24, Tome 454 (2016), pp. 176-182 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

There is given a method for estimation of a probability distribution tail in terms of characteristic function.
@article{ZNSL_2016_454_a9,
     author = {A. Karlov\'a and L. B. Klebanov},
     title = {Estimation of the tail of probability distribution through its characteristic function},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {176--182},
     year = {2016},
     volume = {454},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a9/}
}
TY  - JOUR
AU  - A. Karlová
AU  - L. B. Klebanov
TI  - Estimation of the tail of probability distribution through its characteristic function
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 176
EP  - 182
VL  - 454
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a9/
LA  - ru
ID  - ZNSL_2016_454_a9
ER  - 
%0 Journal Article
%A A. Karlová
%A L. B. Klebanov
%T Estimation of the tail of probability distribution through its characteristic function
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 176-182
%V 454
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a9/
%G ru
%F ZNSL_2016_454_a9
A. Karlová; L. B. Klebanov. Estimation of the tail of probability distribution through its characteristic function. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 24, Tome 454 (2016), pp. 176-182. http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a9/

[1] Y. S. Kim, S. T. Rachev, D. M. Chung, M. L. Bianchi, “The modified tempered stable distribution, GARCH models and option pricing”, Probab. Math. Statist., 29 (2009), 91–117 | MR | Zbl

[2] L. B. Klebanov, L. Slámová, “Integer valued stable random variables”, Statist. Probab. Letters, 83:6 (2013), 1513–1519 | DOI | MR | Zbl

[3] L. B. Klebanov, T. J. Kozubowski, S. T. Rachev, Ill-Posed Problems in Probability and Stability of Random Sums, Nova Science Publishers, Inc, New York, 2006 | MR | Zbl

[4] Yu. V. Linnik, Razlozheniya veroyatnostnykh zakonov, LGU, L., 1960 | MR

[5] Yu. V. Linnik, I. V. Ostrovskii, Razlozheniya sluchainykh velichin i vektorov, Nauka, M., 1972 | MR

[6] R. Paley, N. Wiener, Fourier Transforms in the Complex Domain, AMS Coll. Publ., 19, New York, 1934 | MR | Zbl

[7] D. Polya, “Remarks on characteristic functions”, Proc. of the Berkeley Symp. on Math. Statist. and Probab., Berkeley, 1949, 115–123 | MR | Zbl

[8] N. A. Sapogov, “Problema ustoichivosti dlya teoremy edinstvennosti kharakteristicheskoi funktsii, analiticheskoi v okrestnosti nulya”, Problemy ustoichivosti stokhasticheskikh modelei, VNII sistemnykh issledovanii, Moskva, 1980, 88–94

[9] V. M. Zolotarev, Odnomernye ustoichivye raspredeleniya, Nauka, M., 1983 | MR