@article{ZNSL_2016_454_a8,
author = {I. A. Ibragimov and N. V. Smorodina and M. M. Faddeev},
title = {On a~limit theorem related to probabilistic representation of the {Cauchy} problem solution for the {Schr\"odinger} equation},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {158--175},
year = {2016},
volume = {454},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a8/}
}
TY - JOUR AU - I. A. Ibragimov AU - N. V. Smorodina AU - M. M. Faddeev TI - On a limit theorem related to probabilistic representation of the Cauchy problem solution for the Schrödinger equation JO - Zapiski Nauchnykh Seminarov POMI PY - 2016 SP - 158 EP - 175 VL - 454 UR - http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a8/ LA - ru ID - ZNSL_2016_454_a8 ER -
%0 Journal Article %A I. A. Ibragimov %A N. V. Smorodina %A M. M. Faddeev %T On a limit theorem related to probabilistic representation of the Cauchy problem solution for the Schrödinger equation %J Zapiski Nauchnykh Seminarov POMI %D 2016 %P 158-175 %V 454 %U http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a8/ %G ru %F ZNSL_2016_454_a8
I. A. Ibragimov; N. V. Smorodina; M. M. Faddeev. On a limit theorem related to probabilistic representation of the Cauchy problem solution for the Schrödinger equation. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 24, Tome 454 (2016), pp. 158-175. http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a8/
[1] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Lan, Sankt-Peterburg–Moskva–Krasnodar, 2010
[2] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii i deistviya nad nimi., Nauka, M., 1958 | MR
[3] N. Danford, Dzh. Shvarts, Lineinye operatory. Obschaya teoriya., Izdatelstvo inostrannoi literatury, M., 1962 | MR
[4] I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “Predelnye teoremy o skhodimosti funktsionalov ot sluchainykh bluzhdanii k resheniyu zadachi Koshi dlya uravneniya $\frac{\partial u}{\partial t}=\frac{\sigma^2}2\Delta u$ with complex $\sigma$”, Zap. nauchn. semin. POMI, 420, 2013, 88–102
[5] I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “Kompleksnyi analog tsentralnoi predelnoi teoremy i veroyatnostnaya approksimatsiya integrala Feinmana”, Dokl. Akademii nauk, 459:3 (2014), 400–402 | DOI | Zbl
[6] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR
[7] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 2, Mir, M., 1978 | MR
[8] D. K. Faddeev, B. Z. Vulikh, N. N. Uraltseva i dr., Izbrannye glavy analiza i vysshei algebry, Izdatelstvo Leningradskogo universiteta, 1981
[9] M. V. Fedoryuk, Asimptotika: integraly i ryady, Nauka, M., 1987 | MR