On a limit theorem related to probabilistic representation of the Cauchy problem solution for the Schrödinger equation
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 24, Tome 454 (2016), pp. 158-175 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We suggest a new method of a probabilistic approximation of the Cauchy problem solution for the unperturbed Schrödinger equation by expectations of functionals of some random walk. In contrast to our previous papers we do not suppose the existence of exponential moment for each step of the random walk.
@article{ZNSL_2016_454_a8,
     author = {I. A. Ibragimov and N. V. Smorodina and M. M. Faddeev},
     title = {On a~limit theorem related to probabilistic representation of the {Cauchy} problem solution for the {Schr\"odinger} equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {158--175},
     year = {2016},
     volume = {454},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a8/}
}
TY  - JOUR
AU  - I. A. Ibragimov
AU  - N. V. Smorodina
AU  - M. M. Faddeev
TI  - On a limit theorem related to probabilistic representation of the Cauchy problem solution for the Schrödinger equation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 158
EP  - 175
VL  - 454
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a8/
LA  - ru
ID  - ZNSL_2016_454_a8
ER  - 
%0 Journal Article
%A I. A. Ibragimov
%A N. V. Smorodina
%A M. M. Faddeev
%T On a limit theorem related to probabilistic representation of the Cauchy problem solution for the Schrödinger equation
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 158-175
%V 454
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a8/
%G ru
%F ZNSL_2016_454_a8
I. A. Ibragimov; N. V. Smorodina; M. M. Faddeev. On a limit theorem related to probabilistic representation of the Cauchy problem solution for the Schrödinger equation. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 24, Tome 454 (2016), pp. 158-175. http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a8/

[1] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Lan, Sankt-Peterburg–Moskva–Krasnodar, 2010

[2] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii i deistviya nad nimi., Nauka, M., 1958 | MR

[3] N. Danford, Dzh. Shvarts, Lineinye operatory. Obschaya teoriya., Izdatelstvo inostrannoi literatury, M., 1962 | MR

[4] I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “Predelnye teoremy o skhodimosti funktsionalov ot sluchainykh bluzhdanii k resheniyu zadachi Koshi dlya uravneniya $\frac{\partial u}{\partial t}=\frac{\sigma^2}2\Delta u$ with complex $\sigma$”, Zap. nauchn. semin. POMI, 420, 2013, 88–102

[5] I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “Kompleksnyi analog tsentralnoi predelnoi teoremy i veroyatnostnaya approksimatsiya integrala Feinmana”, Dokl. Akademii nauk, 459:3 (2014), 400–402 | DOI | Zbl

[6] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR

[7] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 2, Mir, M., 1978 | MR

[8] D. K. Faddeev, B. Z. Vulikh, N. N. Uraltseva i dr., Izbrannye glavy analiza i vysshei algebry, Izdatelstvo Leningradskogo universiteta, 1981

[9] M. V. Fedoryuk, Asimptotika: integraly i ryady, Nauka, M., 1987 | MR