Arak's inequalities for the generalized arithmetic progressions
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 24, Tome 454 (2016), pp. 151-157

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1980's, Arak has obtained powerful inequalities for the concentration functions of sums of independent random variables. Using these results, he has solved an old problem stated by Kolmogorov. In this paper, we will modify one of Arak's results including in the statements the generalized arithmetic progressions.
@article{ZNSL_2016_454_a7,
     author = {A. Yu. Zaitsev},
     title = {Arak's inequalities for the generalized arithmetic progressions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {151--157},
     publisher = {mathdoc},
     volume = {454},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a7/}
}
TY  - JOUR
AU  - A. Yu. Zaitsev
TI  - Arak's inequalities for the generalized arithmetic progressions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 151
EP  - 157
VL  - 454
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a7/
LA  - ru
ID  - ZNSL_2016_454_a7
ER  - 
%0 Journal Article
%A A. Yu. Zaitsev
%T Arak's inequalities for the generalized arithmetic progressions
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 151-157
%V 454
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a7/
%G ru
%F ZNSL_2016_454_a7
A. Yu. Zaitsev. Arak's inequalities for the generalized arithmetic progressions. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 24, Tome 454 (2016), pp. 151-157. http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a7/