Arak's inequalities for the generalized arithmetic progressions
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 24, Tome 454 (2016), pp. 151-157
Voir la notice de l'article provenant de la source Math-Net.Ru
In 1980's, Arak has obtained powerful inequalities for the concentration functions of sums of independent random variables. Using these results, he has solved an old problem stated by Kolmogorov. In this paper, we will modify one of Arak's results including in the statements the generalized arithmetic progressions.
@article{ZNSL_2016_454_a7,
author = {A. Yu. Zaitsev},
title = {Arak's inequalities for the generalized arithmetic progressions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {151--157},
publisher = {mathdoc},
volume = {454},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a7/}
}
A. Yu. Zaitsev. Arak's inequalities for the generalized arithmetic progressions. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 24, Tome 454 (2016), pp. 151-157. http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a7/