@article{ZNSL_2016_454_a7,
author = {A. Yu. Zaitsev},
title = {Arak's inequalities for the generalized arithmetic progressions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {151--157},
year = {2016},
volume = {454},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a7/}
}
A. Yu. Zaitsev. Arak's inequalities for the generalized arithmetic progressions. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 24, Tome 454 (2016), pp. 151-157. http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a7/
[1] T. V. Arak, “O skorosti skhodimosti v ravnomernoi predelnoi teoreme Kolmogorova. I”, Teoriya veroyatn. i ee primen., 26:2 (1981), 225–245 | MR | Zbl
[2] T. V. Arak, A. Yu. Zaitsev, Ravnomernye predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Tr. MIAN SSSR, 174, 1986, 217 pp. | MR | Zbl
[3] Yu. S. Eliseeva, F. Götze, A. Yu. Zaitsev, Arak inequalities for concentration functions and the Littlewood–Offord problem, 2015, arXiv: 1506.09034 | MR
[4] F. Gëttse, Yu. S. Eliseeva, A. Yu. Zaitsev, “Neravenstva Araka dlya funktsii kontsentratsii i problema Littlvuda–Offorda”, Doklady Akademii nauk, 467:5 (2016), 514–518 | DOI | MR
[5] F. Götze, A. Yu. Zaitsev, New applications of Arak's inequalities to the Littlewood–Offord problem, 2016, arXiv: 1611.00831
[6] B. Green,, Notes on progressions and convex geometry, Preprint, 2005
[7] A. N. Kolmogorov, “Dve ravnomernye predelnye teoremy dlya summ nezavisimykh slagaemykh”, Teoriya veroyatn. i ee primen., 1:4 (1956), 426–436
[8] T. Tao, Van Vu, Additive Combinatorics, Cambridge Univ. Pr., 2006 | MR | Zbl
[9] T. Tao, Van Vu, “John-type theorems for generalized arithmetic progressions and iterated sumsets”, Adv. Math., 219:2 (2008), 428–449 | DOI | MR | Zbl