Arak's inequalities for the generalized arithmetic progressions
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 24, Tome 454 (2016), pp. 151-157 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In 1980's, Arak has obtained powerful inequalities for the concentration functions of sums of independent random variables. Using these results, he has solved an old problem stated by Kolmogorov. In this paper, we will modify one of Arak's results including in the statements the generalized arithmetic progressions.
@article{ZNSL_2016_454_a7,
     author = {A. Yu. Zaitsev},
     title = {Arak's inequalities for the generalized arithmetic progressions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {151--157},
     year = {2016},
     volume = {454},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a7/}
}
TY  - JOUR
AU  - A. Yu. Zaitsev
TI  - Arak's inequalities for the generalized arithmetic progressions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 151
EP  - 157
VL  - 454
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a7/
LA  - ru
ID  - ZNSL_2016_454_a7
ER  - 
%0 Journal Article
%A A. Yu. Zaitsev
%T Arak's inequalities for the generalized arithmetic progressions
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 151-157
%V 454
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a7/
%G ru
%F ZNSL_2016_454_a7
A. Yu. Zaitsev. Arak's inequalities for the generalized arithmetic progressions. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 24, Tome 454 (2016), pp. 151-157. http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a7/

[1] T. V. Arak, “O skorosti skhodimosti v ravnomernoi predelnoi teoreme Kolmogorova. I”, Teoriya veroyatn. i ee primen., 26:2 (1981), 225–245 | MR | Zbl

[2] T. V. Arak, A. Yu. Zaitsev, Ravnomernye predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Tr. MIAN SSSR, 174, 1986, 217 pp. | MR | Zbl

[3] Yu. S. Eliseeva, F. Götze, A. Yu. Zaitsev, Arak inequalities for concentration functions and the Littlewood–Offord problem, 2015, arXiv: 1506.09034 | MR

[4] F. Gëttse, Yu. S. Eliseeva, A. Yu. Zaitsev, “Neravenstva Araka dlya funktsii kontsentratsii i problema Littlvuda–Offorda”, Doklady Akademii nauk, 467:5 (2016), 514–518 | DOI | MR

[5] F. Götze, A. Yu. Zaitsev, New applications of Arak's inequalities to the Littlewood–Offord problem, 2016, arXiv: 1611.00831

[6] B. Green,, Notes on progressions and convex geometry, Preprint, 2005

[7] A. N. Kolmogorov, “Dve ravnomernye predelnye teoremy dlya summ nezavisimykh slagaemykh”, Teoriya veroyatn. i ee primen., 1:4 (1956), 426–436

[8] T. Tao, Van Vu, Additive Combinatorics, Cambridge Univ. Pr., 2006 | MR | Zbl

[9] T. Tao, Van Vu, “John-type theorems for generalized arithmetic progressions and iterated sumsets”, Adv. Math., 219:2 (2008), 428–449 | DOI | MR | Zbl