Asymptotic expansion of posterior distribution of parameter centered by a~$\sqrt n$-consistent estimate
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 24, Tome 454 (2016), pp. 121-150
Voir la notice de l'article provenant de la source Math-Net.Ru
The article studies asymptotic behaviour of posterior distribution of a real parameter centered by a $\sqrt n$-consistent estimate. An analogue of Bernstein–von Mises theorem is presented. The article emphasizes uniformity of the result. In the same framework asymptotic expansions of posterior distribution and posterior mean of functions bounded by polynomial are constructed.
@article{ZNSL_2016_454_a6,
author = {A. A. Zaikin},
title = {Asymptotic expansion of posterior distribution of parameter centered by a~$\sqrt n$-consistent estimate},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {121--150},
publisher = {mathdoc},
volume = {454},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a6/}
}
TY - JOUR AU - A. A. Zaikin TI - Asymptotic expansion of posterior distribution of parameter centered by a~$\sqrt n$-consistent estimate JO - Zapiski Nauchnykh Seminarov POMI PY - 2016 SP - 121 EP - 150 VL - 454 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a6/ LA - ru ID - ZNSL_2016_454_a6 ER -
A. A. Zaikin. Asymptotic expansion of posterior distribution of parameter centered by a~$\sqrt n$-consistent estimate. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 24, Tome 454 (2016), pp. 121-150. http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a6/