@article{ZNSL_2016_454_a5,
author = {M. S. Ermakov},
title = {On moderate deviation probabilities of empirical probability measures for contiguous probability measures},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {112--120},
year = {2016},
volume = {454},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a5/}
}
TY - JOUR AU - M. S. Ermakov TI - On moderate deviation probabilities of empirical probability measures for contiguous probability measures JO - Zapiski Nauchnykh Seminarov POMI PY - 2016 SP - 112 EP - 120 VL - 454 UR - http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a5/ LA - ru ID - ZNSL_2016_454_a5 ER -
M. S. Ermakov. On moderate deviation probabilities of empirical probability measures for contiguous probability measures. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 24, Tome 454 (2016), pp. 112-120. http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a5/
[1] M. A. Arcones, “Moderate deviations of empirical processes”, Stochastic Inequalities and Applications, eds. E. Giné, C. Houdré, D. Nualart, Birkhäuser, Boston, 2003, 189–212 | DOI | MR | Zbl
[2] M. A. Arcones, “Moderate deviations for $M$-estimators”, Test, 11 (2002), 465–500 | DOI | MR | Zbl
[3] A. A. Borovkov, A. A. Mogulskii, “O veroyatnostyakh bolshikh uklonenii v topologicheskikh prostranstvakh. II”, Sib. Matem. zhurnal, 21:5 (1980), 12–26 | MR | Zbl
[4] E. Bolthausen, “On the probability of large deviations in Banach spaces”, Ann. Probab., 12 (1984), 427–435 | DOI | MR | Zbl
[5] A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications, Jones and Bartlett, Boston, 1993 | MR | Zbl
[6] P. Eichelsbacher, U. Schmock, “Large deviations of $U$-empirical measures in strong topologies and applications”, Ann. Inst. Henri Poincaré Probab. Statist., 38 (2002), 779–797 | MR | Zbl
[7] P. Eichelsbacher, M. Löwe, “Moderate deviations for i.i.d. random variables”, ESAIM: Probab. Statist., 7 (2003), 207–216 | DOI | MR
[8] M. S. Ermakov, “Importance sampling for simulation of moderate deviation probabilities of statistics”, Statist. Decision, 25 (2007), 265–284 | DOI | MR | Zbl
[9] M. S. Ermakov, “Printsip bolshikh uklonenii dlya veroyatnostei umerennykh uklonenii empiricheskikh butstrap-mer”, Zap. nauchn. semin. POMI, 412, 2013, 138–180 | MR
[10] M. S. Ermakov, “Asimptoticheski effektivnye protsedury metoda suschestvennoi vyborki dlya butstrapa”, Zap. nauchn. semin. POMI, 431, 2014, 82–96 | MR
[11] F. Gao, X. Zhao, “Delta method in large deviations and moderate deviations for estimators”, Ann. Statist., 39 (2011), 1211–1240 | DOI | MR | Zbl
[12] A. W. van der Vaart, J. A. Wellner, Weak Convergence and Empirical Processes with Applications to Statistics, Springer, New York, 1996 | MR | Zbl
[13] L. Wu, “Large deviations, moderate deviations and LIL for empirical processes”, Ann. Probab., 22 (1994), 17–27 | DOI | MR