@article{ZNSL_2016_454_a4,
author = {F. G\"otze and D. Koliada and D. Zaporozhets},
title = {Correlation functions of real zeros of random polynomials},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {102--111},
year = {2016},
volume = {454},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a4/}
}
F. Götze; D. Koliada; D. Zaporozhets. Correlation functions of real zeros of random polynomials. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 24, Tome 454 (2016), pp. 102-111. http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a4/
[1] P. Bleher, X. Di, “Correlations between zeros of a random polynomial”, J. Statist. Phys., 88:1–2 (1997), 269–305 | DOI | MR | Zbl
[2] P. Bleher, X. Di, “Correlations between zeros of non-Gaussian random polynomials”, Int. Math. Res. Not., 46 (2004), 2443–2484 | DOI | MR | Zbl
[3] H. Federer, Geometric measure theory, Springer, 1969 | MR | Zbl
[4] F. Götze, D. Kaliada, D. Zaporozhets, “Distribution of complex algebraic numbers”, Proc. Amer. Math. Soc., 145 (2017), 61–67 | DOI | MR
[5] F. Götze, D. Zaporozhets, Discriminant and root separation of integral polynomials, Preprint, 2014, arXiv: 1407.6388 | MR
[6] J. B. Hough, M. Krishnapur, Y. Peres, B. Virág, Zeros of Gaussian analytic functions and determinantal point processes, University Lecture Series, 51, AMS, 2009 | DOI | MR | Zbl
[7] D. Kaliada, On the density function of the distribution of real algebraic numbers, Preprint, 2014, arXiv: 1405.1627
[8] D. Kaliada, “On the frequency of integer polynomials with a given number of close roots”, Tr. Inst. Mat. (Minsk), 20:2 (2012), 51–63 (In Russian)
[9] I. Macdonald, Symmetric Functions and Hall Folynomials, Oxford mathematical monographs, 2nd edition, Oxford University Press, 1998 | MR
[10] D. Zaporozhets, “On distribution of the number of real zeros of a random polynomial”, Zap. Nauchn. Semin. POMI, 320, 2004, 69–79 | MR | Zbl
[11] D. Zaporozhets, “Random polynomials and geometric probability”, Dokl. Akad. Nauk, 71:1 (2005), 53–57 | MR