Correlation functions of real zeros of random polynomials
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 24, Tome 454 (2016), pp. 102-111 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We give an explicit formula for the correlation functions of real zeros of a random polynomial with arbitrary independent continuously distributed coefficients.
@article{ZNSL_2016_454_a4,
     author = {F. G\"otze and D. Koliada and D. Zaporozhets},
     title = {Correlation functions of real zeros of random polynomials},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {102--111},
     year = {2016},
     volume = {454},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a4/}
}
TY  - JOUR
AU  - F. Götze
AU  - D. Koliada
AU  - D. Zaporozhets
TI  - Correlation functions of real zeros of random polynomials
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 102
EP  - 111
VL  - 454
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a4/
LA  - en
ID  - ZNSL_2016_454_a4
ER  - 
%0 Journal Article
%A F. Götze
%A D. Koliada
%A D. Zaporozhets
%T Correlation functions of real zeros of random polynomials
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 102-111
%V 454
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a4/
%G en
%F ZNSL_2016_454_a4
F. Götze; D. Koliada; D. Zaporozhets. Correlation functions of real zeros of random polynomials. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 24, Tome 454 (2016), pp. 102-111. http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a4/

[1] P. Bleher, X. Di, “Correlations between zeros of a random polynomial”, J. Statist. Phys., 88:1–2 (1997), 269–305 | DOI | MR | Zbl

[2] P. Bleher, X. Di, “Correlations between zeros of non-Gaussian random polynomials”, Int. Math. Res. Not., 46 (2004), 2443–2484 | DOI | MR | Zbl

[3] H. Federer, Geometric measure theory, Springer, 1969 | MR | Zbl

[4] F. Götze, D. Kaliada, D. Zaporozhets, “Distribution of complex algebraic numbers”, Proc. Amer. Math. Soc., 145 (2017), 61–67 | DOI | MR

[5] F. Götze, D. Zaporozhets, Discriminant and root separation of integral polynomials, Preprint, 2014, arXiv: 1407.6388 | MR

[6] J. B. Hough, M. Krishnapur, Y. Peres, B. Virág, Zeros of Gaussian analytic functions and determinantal point processes, University Lecture Series, 51, AMS, 2009 | DOI | MR | Zbl

[7] D. Kaliada, On the density function of the distribution of real algebraic numbers, Preprint, 2014, arXiv: 1405.1627

[8] D. Kaliada, “On the frequency of integer polynomials with a given number of close roots”, Tr. Inst. Mat. (Minsk), 20:2 (2012), 51–63 (In Russian)

[9] I. Macdonald, Symmetric Functions and Hall Folynomials, Oxford mathematical monographs, 2nd edition, Oxford University Press, 1998 | MR

[10] D. Zaporozhets, “On distribution of the number of real zeros of a random polynomial”, Zap. Nauchn. Semin. POMI, 320, 2004, 69–79 | MR | Zbl

[11] D. Zaporozhets, “Random polynomials and geometric probability”, Dokl. Akad. Nauk, 71:1 (2005), 53–57 | MR