Asymptotic efficiency of new distribution-free tests of symmetry for generalized skew alternatives
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 24, Tome 454 (2016), pp. 82-101 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We calculate Bahadur efficiency of new nonparametric tests for symmetry recently proposed by Nikitin and Ahsanullah [30]. In contrast with that paper where only location alternatives were discussed, we are interested in generalized skew alternatives. It is shown that the new tests are highly efficient for a vast class of skew alternatives. The problem of most favorable alternatives is also explored.
@article{ZNSL_2016_454_a3,
     author = {G. T. Bookiya and Ya. Yu. Nikitin},
     title = {Asymptotic efficiency of new distribution-free tests of symmetry for generalized skew alternatives},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {82--101},
     year = {2016},
     volume = {454},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a3/}
}
TY  - JOUR
AU  - G. T. Bookiya
AU  - Ya. Yu. Nikitin
TI  - Asymptotic efficiency of new distribution-free tests of symmetry for generalized skew alternatives
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 82
EP  - 101
VL  - 454
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a3/
LA  - ru
ID  - ZNSL_2016_454_a3
ER  - 
%0 Journal Article
%A G. T. Bookiya
%A Ya. Yu. Nikitin
%T Asymptotic efficiency of new distribution-free tests of symmetry for generalized skew alternatives
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 82-101
%V 454
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a3/
%G ru
%F ZNSL_2016_454_a3
G. T. Bookiya; Ya. Yu. Nikitin. Asymptotic efficiency of new distribution-free tests of symmetry for generalized skew alternatives. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 24, Tome 454 (2016), pp. 82-101. http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a3/

[1] M. Ahsanullah, “On some characteristic property of symmetric distributions”, Pakist. J. Statist., 8 (1992), 171–179 | MR

[2] R. B. Arellano-Valle, H. W. Gomez, E. A. Quintana, “A new class of skew-normal distributions”, Commun. Statist. Theor. Meth., 33 (2004), 1465–1480 | DOI | MR | Zbl

[3] A. Azzalini, “A class of distributions which includes the normal ones”, Scand. J. Statist., 12 (1985), 171–178 | MR | Zbl

[4] A. Azzalini, “The skew-normal distribution and related multivariate families”, Scand. J. Statist., 32 (2005), 159–188 | DOI | MR | Zbl

[5] A. Azzalini, A. Capitanio, “Distributions generated by perturbation of symmetry with emphasis on a multivariate skew $t$-distribution”, J. Roy. Statist. Soc. B, 65 (2003), 367–389 | DOI | MR | Zbl

[6] A. Azzalini, A. Dalla Valle, “The multivariate skew-normal distribution”, Biometrika, 83 (1996), 715–726 | DOI | MR | Zbl

[7] A. Azzalini, G. Regoli, “The work of Fernando de Helguero on non-normality arising from selection”, Chilean J. Statist., 3:2 (2012), 113–128 | MR

[8] A. Azzalini, The Skew-Normal and Related Families, With the collaboration of A. Capitanio, Cambridge University Press, Cambridge, 2013 | MR | Zbl

[9] R. R. Bahadur, Some Limit Theorems in Statistics, SIAM, Philadelphia, 1971 | MR | Zbl

[10] L. Baringhaus, N. Henze, “A characterization of and new consistent tests for symmetry”, Commun. Statist. Theor. Meth., 21 (1992), 1555–1566 | DOI | MR | Zbl

[11] D. Cassart, M. Hallin, D. Paindaveine, “Optimal detection of Fechner-asymmetry”, J. Statist. Plann. Infer., 138:8 (2008), 2499–2525 | DOI | MR | Zbl

[12] S. K. Chatterjee, P. K. Sen, “On Kolmogorov–Smirnov-type tests for symmetry”, Ann. Inst. Statist. Math., 25 (1973), 287–299 | DOI | MR | Zbl

[13] F. De Helguero, “Sulla rappresentazione analitica delle curve abnormali”, Atti del IV Congresso Internazionale dei Matematici (Roma, 6–11 Aprile 1908), sezione III-B, v. III, ed. G. Castelnuovo, R. Accademia dei Lincei, Roma, 1909, 288–299

[14] A. Durio, Ya. Yu. Nikitin, “On asymptotic efficiency of certain distribution-free symmetry tests under skew alternatives”, Studi in Onore di Angelo Zanella, eds. B. V. Frosini, U. Magagnoli, G. Boari, Vita e Pensiero, Milano, 2002, 223–239 | Zbl

[15] A. Durio, Ya. Yu. Nikitin, “Local asymptotic efficiency of some goodness-of-fit tests under skew alternatives”, J. Statist. Plann. Infer., 115 (2003), 171–179 | DOI | MR | Zbl

[16] A. Durio, Ya. Yu. Nikitin, “Local efficiency of integrated goodness-of-fit tests under skew alternatives”, Statist. Probab. Lett., 117 (2016), 136–143 | DOI | MR | Zbl

[17] R. Helmers, P. Janssen, R. Serfling, “Glivenko–Cantelli properties of some generalized empirical DF's and strong convergence of generalized $L$-statistics”, Probab. Theor. Relat. Fields, 79 (1988), 75–93 | DOI | MR | Zbl

[18] T. Hettsmansperger, Statistical Inference based on Ranks, Wiley, New York, 1984 | MR

[19] M. Jovanovic, B. Miloševic, Ya. Yu. Nikitin, M. Obradovic, K. Yu. Volkova, “Tests of exponentiality based on Arnold–Villaseñ or characterization and their efficiencies”, Comp. Statist. Data Anal., 90 (2015), 100–113 | DOI | MR

[20] E. L. Lehmann, H. J. D'Abrera, Nonparametrics: Statistical Methods based on Ranks, Springer, New York, 2006 | MR | Zbl

[21] C. Ley, “Flexible modelling in statistics: past, present and future”, J. Soc. Franç. Statist., 156 (2015), 76–97 | MR

[22] C. Ley, D. Paindaveine, “Le Cam optimal tests for symmetry against Ferreira and Steel's general skewed distributions”, J. Nonpar. Statist., 21:8 (2009), 943–967 | DOI | MR | Zbl

[23] V. V. Litvinova, “New nonparametric test for symmetry and its asymptotic efficiency”, Vestnik St. Petersb. Univ. Matem., 34 (2001), 12–14 | MR

[24] Y. Ma, M. G. Genton, “Flexible class of skew-symmetric distributions”, Scand. J. Statist., 31:3 (2004), 459–468 | DOI | MR | Zbl

[25] B. Miloševic, M. Obradovic, “Characterization based symmetry tests and their asymptotic efficiencies”, Statist. Probab. Lett., 119 (2016), 155–162 | DOI | MR | Zbl

[26] K. Morris, D. Szynal, “Goodness-of-fit tests using characterizations of continuous distributions.”, Appl. Math. (Warsaw), 28 (2001), 151–168 | DOI | MR | Zbl

[27] P. Muliere, Ya. Yu. Nikitin, “Scale-invariant test of normality based on Polya's characterization”, Metron, 60 (2002), 21–33 | MR | Zbl

[28] Ya. Nikitin, Asymptotic Efficiency of Nonparametric Tests, Cambridge University Press, New York, 1995 | MR | Zbl

[29] Ya. Yu. Nikitin, “Large deviations of $U$-empirical Kolmogorov–Smirnov test, and their efficiency”, J. Nonpar. Statist., 22 (2010), 649–668 | DOI | MR | Zbl

[30] Ya. Yu. Nikitin, M. Ahsanullah, “New $U$-empirical tests of symmetry based on extremal order statistics, and their efficiencies.”, Mathematical Statistics and Limit Theorems, Festschrift in Honor of Paul Deheuvels, Springer, 2015, 231–248 | MR | Zbl

[31] AMS Translations, ser. 2, 203 (2001), 107–146 | MR | Zbl

[32] Ya. Yu. Nikitin, K. Yu. Volkova, “Asymptotic efficiency of exponentiality tests based on order statistics characterization”, Georgian Math. J., 17:4 (2010), 749–763 | MR | Zbl

[33] M. Obradovic, M. Jovanovic, B. Miloševic, “Goodness-of-fit tests for Pareto distribution based on a characterization and their asymptotics”, Statistics, 49:5 (2015), 1026–1041 | DOI | MR | Zbl

[34] K. Yu. Volkova, Y. Y. Nikitin, “On the asymptotic efficiency of normality tests based on the Shepp property”, Vestnik St. Petersb. Univ. Matem., 42:4 (1999), 256–261 | DOI | MR

[35] J. Wang, J. Boyer, M. G. Genton, “A skew-symmetric representation of multivariate distribution”, Statist. Sinica, 14 (2004), 1259–1270 | MR | Zbl