On integral of a semi-Markov diffusion process
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 24, Tome 454 (2016), pp. 276-291
Cet article a éte moissonné depuis la source Math-Net.Ru
A semi-Markov diffusion process $(X(t))$ $(t\ge0)$ is considered. The process $(J(t))$ $(t\ge0)$ equals to integral of the process $(X(t))$ on interval $[0,T)$ is studied. The relation between one-dimensional differential equation of the second order of elliptical type and asymptotics of a solution of Dirichlet problem on an interval with length tending to zero is derived. This relation is used for deriving a differential equation Laplace transform for the semi-Markov generating function of the process $(J(t))$.
@article{ZNSL_2016_454_a17,
author = {B. P. Harlamov},
title = {On integral of {a~semi-Markov} diffusion process},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {276--291},
year = {2016},
volume = {454},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a17/}
}
B. P. Harlamov. On integral of a semi-Markov diffusion process. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 24, Tome 454 (2016), pp. 276-291. http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a17/
[1] E. B. Dynkin, Markovskie protsessy, FM, M., 1963
[2] S. L. Sobolev, Uravneniya matematicheskoi fiziki, Gostekhizdat, M., 1954
[3] B. P. Kharlamov, Nepreryvnye polumarkovskie protsessy, Nauka, SPb., 2001
[4] B. P. Kharlamov, “O markovskom diffuzionnom protsesse s zamedlennym otrazheniem na granitse intervala”, Zap. nauchn. semin. POMI, 368, 2009, 243–267
[5] B. P. Kharlamov, “Finalnoe raspredelenie diffuzionnogo protsessa: polumarkovskii podkhod”, Teoriya veroyatn. i ee primen., 60:3 (2015), 506–524 | DOI