Small deviation probabilities for sum of independent positive random variables, which have a common distribution, decreasing at zero not faster than a power
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 24, Tome 454 (2016), pp. 254-260 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the note we investigate small deviation probabilities of cumulative sum of independent positive random variables, which have a common distribution, decreasing at zero not faster than a power.
@article{ZNSL_2016_454_a15,
     author = {L. V. Rozovsky},
     title = {Small deviation probabilities for sum of independent positive random variables, which have a~common distribution, decreasing at zero not faster than a~power},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {254--260},
     year = {2016},
     volume = {454},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a15/}
}
TY  - JOUR
AU  - L. V. Rozovsky
TI  - Small deviation probabilities for sum of independent positive random variables, which have a common distribution, decreasing at zero not faster than a power
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 254
EP  - 260
VL  - 454
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a15/
LA  - ru
ID  - ZNSL_2016_454_a15
ER  - 
%0 Journal Article
%A L. V. Rozovsky
%T Small deviation probabilities for sum of independent positive random variables, which have a common distribution, decreasing at zero not faster than a power
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 254-260
%V 454
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a15/
%G ru
%F ZNSL_2016_454_a15
L. V. Rozovsky. Small deviation probabilities for sum of independent positive random variables, which have a common distribution, decreasing at zero not faster than a power. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 24, Tome 454 (2016), pp. 254-260. http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a15/

[1] L. V. Rozovskii, “Veroyatnosti malykh uklonenii summ nezavisimykh polozhitelnykh sluchainykh velichin c medlenno menyayuschimsya v nule raspredeleniem”, Zap. nauchn. semin. POMI, 412, 2013, 237–251 | MR

[2] L. V. Rozovskii, “Malye ukloneniya vzveshennoi summy nezavisimykh polozhitelnykh sluchainykh velichin s obschim raspredeleniem, ubyvayuschem v nule ne bystree stepeni”, Teoriya veroyatn. i ee primen., 60:1 (2015), 178–186 | DOI

[3] M. A. Lifshits, “On the lower tail probabilities of some random series”, Ann. Probab., 25 (1997), 424–442 | DOI | MR | Zbl

[4] L. V. Rozovskii, “O veroyatnostyakh malykh uklonenii summ nezavisimykh polozhitelnykh sluchainykh velichin”, Zap. nauchn. semin. POMI, 341, 2007, 151–167 | MR | Zbl

[5] L. V. Rozovskii, “Veroyatnosti malykh uklonenii dlya odnogo klassa raspredelenii so stepennym ubyvaniem v nule”, Zap. nauchn. semin. POMI, 328, 2005, 182–190 | MR | Zbl

[6] L. V. Rozovsky, “Remarks on a link between Laplace transform and distribution function of a nonnegative random variable”, Statist. Probab. Letters, 79 (2009), 1501–1508 | DOI | MR | Zbl

[7] L. V. Rozovskii, “Veroyatnosti malykh uklonenii vzveshennoi summy nezavisimykh sluchainykh velichin s obschim raspredeleniem, ubyvayuschem v nule ne bystree stepeni”, Zap. nauchn. semin. POMI, 431, 2014, 178–185 | MR

[8] L. V. Rozovsky, “Small deviation probabilities of weighted sums under minimal moment assumptions”, Statist. Probab. Letters, 86 (2014), 1–6 | DOI | MR | Zbl