Ranking and selection of populations based on sample means
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 24, Tome 454 (2016), pp. 238-253 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A number of directions is indicated in which, for statistical problems of decision making related to ordering the parameters of distributions, it is expedient to lean on comparison of sample means. It is assumed that the corresponding parametric family has no nontrivial sufficient statistics. The key role is played by establishing conditions under which the reliability of inferences increases monotonically with the size of the sampling. Examples of applications are given.
@article{ZNSL_2016_454_a14,
     author = {M. I. Revyakov},
     title = {Ranking and selection of populations based on sample means},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {238--253},
     year = {2016},
     volume = {454},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a14/}
}
TY  - JOUR
AU  - M. I. Revyakov
TI  - Ranking and selection of populations based on sample means
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 238
EP  - 253
VL  - 454
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a14/
LA  - ru
ID  - ZNSL_2016_454_a14
ER  - 
%0 Journal Article
%A M. I. Revyakov
%T Ranking and selection of populations based on sample means
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 238-253
%V 454
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a14/
%G ru
%F ZNSL_2016_454_a14
M. I. Revyakov. Ranking and selection of populations based on sample means. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 24, Tome 454 (2016), pp. 238-253. http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a14/

[1] M. I. Revyakov, “Schur-convexity of $2$nd order, certain subclass of multivariate arrangement increasing functions with applications in statistics”, J. Multivar. Anal., 116 (2013), 25–34 | DOI | MR | Zbl

[2] E. L. Lehmann, Testing Statistical Hypotheses, Wiley, 1986 | MR | Zbl

[3] C. Ma, “On peakedness of distributions of convex combinations”, J. Statist. Plann. Inference, 70 (1998), 51–56 | DOI | MR | Zbl

[4] F. Proschan, “Peakedness of distributions of convex combinations”, Ann. Math. Statist., 36 (1965), 1703–1706 | DOI | MR | Zbl

[5] M. L. Eaton, “Some optimum properties of ranking procedures”, Ann. Math. Statist., 38 (1967), 124–137 | DOI | MR | Zbl

[6] E. L. Lehmann, “On a theorem of Bahadur and Goodman”, Ann. Math. Statist., 37 (1966), 1–6 | DOI | MR | Zbl

[7] M. A. Girshick, “Contributions to the Theory of sequential analysis. I”, Ann. Math. Statist., 17 (1946), 123–143 | DOI | MR | Zbl

[8] R. H. Randles, M. Hollander, “$\Gamma$-minimax selection procedures in treatments versus control problems”, Ann. Math. Statist., 42 (1971), 330–341 | DOI | MR | Zbl

[9] A. W. Marshall, I. Olkin, Inequalities: Theory of Majorization and Its Applications, Academic Press, 1979 | MR | Zbl

[10] M. Y. An, “Logconcavity versus logcovexity: a complete characterization.”, J. Economic Theory, 80 (1998), 350–369 | DOI | MR | Zbl

[11] C. R. Rao, Linear Statistical Inference and its Applications, Wiley, 1965 | MR | Zbl

[12] G. G. Lorentz, “An inequality for rearrangements”, Amer. Math. Monthly, 60 (1953), 176–179 | DOI | MR | Zbl

[13] M. I. Revyakov, “Optimal substitution of arguments of an arrangement increasing function based on sufficient statistics for parameter-arguments”, J. Math. Sci., 176:2 (2011), 209–223 | DOI | MR | Zbl