A probabilistic representation of the Cauchy problem solution for an evolution equation with the differential operator of the order greater than 2
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 24, Tome 454 (2016), pp. 220-237 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $m$ be a positive integer. We construct a probabilistic representation of the Cauchy problem solution for the high-order heat-type equation $\frac{\partial u}{\partial t}=c_m\frac{\partial^mu}{\partial^mx}$.
@article{ZNSL_2016_454_a13,
     author = {M. V. Platonova},
     title = {A probabilistic representation of the {Cauchy} problem solution for an evolution equation with the differential operator of the order greater than~2},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {220--237},
     year = {2016},
     volume = {454},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a13/}
}
TY  - JOUR
AU  - M. V. Platonova
TI  - A probabilistic representation of the Cauchy problem solution for an evolution equation with the differential operator of the order greater than 2
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 220
EP  - 237
VL  - 454
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a13/
LA  - ru
ID  - ZNSL_2016_454_a13
ER  - 
%0 Journal Article
%A M. V. Platonova
%T A probabilistic representation of the Cauchy problem solution for an evolution equation with the differential operator of the order greater than 2
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 220-237
%V 454
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a13/
%G ru
%F ZNSL_2016_454_a13
M. V. Platonova. A probabilistic representation of the Cauchy problem solution for an evolution equation with the differential operator of the order greater than 2. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 24, Tome 454 (2016), pp. 220-237. http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a13/

[1] Yu. L. Daletskii, S. V. Fomin, Mery i differentsialnye uravneniya v funktsionalnykh prostranstvakh, Nauka, M., 1983 | MR

[2] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR

[3] Dzh. Kingman, Puassonovskie protsessy, MTsNMO, M., 2007

[4] S. Mazzucchi, “Probabilistic representations for the solution of higher order differential equations”, Intern. J. Part. Differ. Eq., 2013 (2013), Article ID 297857, 7 pp. | Zbl

[5] E. Orsingher, X. Zhao, “Iterated processes and their applications to higher order differential equations”, Acta. Sin. (Engl. Ser.), 15:2 (1999), 173–180 | MR | Zbl

[6] M. V. Platonova, “Veroyatnostnoe predstavlenie resheniya zadachi Koshi dlya evolyutsionnogo uravneniya s operatorom Rimana–Liuvillya”, Teoriya veroyatn. i ee primen., 61:3 (2016), 417–438 | DOI

[7] N. V. Smorodina, M. M. Faddeev, “Predstavlenie Levi–Khinchina odnogo klassa znakoperemennykh ustoichivykh mer”, Zap. nauchn. semin. POMI, 361, 2008, 145–166 | Zbl

[8] N. V Smorodina, M. M. Faddeev, “Veroyatnostnoe predstavlenie reshenii nekotorogo klassa evolyutsionnykh uravnenii”, Zap. nauchn. semin. POMI, 384, 2010, 238–266

[9] N. V. Smorodina, M. M. Faddeev, “The Levy–Khinchin representation of the one class of signed stable measures and some its applications”, Acta Appl. Math., 110 (2010), 1289–1308 | DOI | MR | Zbl

[10] T. Funaki, “Probabilistic construction of the solution of some higher order parabolic differential equation”, Proc. Japan Acad. Ser. A Math. Sci., 55:5 (1979), 176–179 | DOI | MR | Zbl

[11] K. Hochberg, “A signed measure on path space related to Wiener measure”, Ann. Probab., 6:3 (1978), 433–458 | DOI | MR | Zbl