Estimation of the constant in the inequality for the uniform distance between distributions of sequential sums of i.i.d. random variables
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 24, Tome 454 (2016), pp. 216-219 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Some of the known inequalities for the uniform distance between distributions of sequential sums of independent identically distributed random variables are considered. In the case where distribution $F$ has $0$ as $q$-quantile an upper bound for the absolute constant in the inequality is given.
@article{ZNSL_2016_454_a12,
     author = {E. L. Maistrenko},
     title = {Estimation of the constant in the inequality for the uniform distance between distributions of sequential sums of i.i.d. random variables},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {216--219},
     year = {2016},
     volume = {454},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a12/}
}
TY  - JOUR
AU  - E. L. Maistrenko
TI  - Estimation of the constant in the inequality for the uniform distance between distributions of sequential sums of i.i.d. random variables
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 216
EP  - 219
VL  - 454
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a12/
LA  - ru
ID  - ZNSL_2016_454_a12
ER  - 
%0 Journal Article
%A E. L. Maistrenko
%T Estimation of the constant in the inequality for the uniform distance between distributions of sequential sums of i.i.d. random variables
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 216-219
%V 454
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a12/
%G ru
%F ZNSL_2016_454_a12
E. L. Maistrenko. Estimation of the constant in the inequality for the uniform distance between distributions of sequential sums of i.i.d. random variables. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 24, Tome 454 (2016), pp. 216-219. http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a12/

[1] T. V. Arak, A. Yu. Zaitsev, Ravnomernye predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Tr. MIAN SSSR, 174, 1986 | MR | Zbl

[2] A. Yu. Zaitsev, “Otsenka blizosti raspredelenii posledovatelnykh summ nezavisimykh odinakovo raspredelennykh sluchainykh vektorov”, Zap. nauchn. semin. LOMI, 97, 1981, 83–87 | MR | Zbl

[3] A. Yu. Zaitsev, “Nekotorye svoistva $n$-kratnykh svertok raspredelenii”, Teoriya veroyatn. i ee primen., 26:1 (1981), 152–156 | MR | Zbl

[4] G. Zigel, “Verkhnie otsenki dlya funktsii kontsentratsii v gilbertovom prostranstve”, Teoriya veroyatn. i ee primen., 26:2 (1981), 335–349 | MR | Zbl

[5] I. G. Shevtsova, “Ob asimptoticheski pravilnykh postoyannykh v neravenstve Berri–Esseena–Katsa”, Teoriya veroyatn. i ee primen., 55:2 (2010), 271–304 | DOI | MR