On the rate of convergence in the strong law of large numbers for non-negative random variables
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 24, Tome 454 (2016), pp. 183-194
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the rate of convergence in the strong law of large numbers for sequences of non-negative random variables without the independence assumption. We obtain conditions for which an analog of the Baum–Katz theorem holds.
@article{ZNSL_2016_454_a10,
author = {V. M. Korchevsky},
title = {On the rate of convergence in the strong law of large numbers for non-negative random variables},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {183--194},
publisher = {mathdoc},
volume = {454},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a10/}
}
TY - JOUR AU - V. M. Korchevsky TI - On the rate of convergence in the strong law of large numbers for non-negative random variables JO - Zapiski Nauchnykh Seminarov POMI PY - 2016 SP - 183 EP - 194 VL - 454 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a10/ LA - ru ID - ZNSL_2016_454_a10 ER -
V. M. Korchevsky. On the rate of convergence in the strong law of large numbers for non-negative random variables. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 24, Tome 454 (2016), pp. 183-194. http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a10/