On the rate of convergence in the strong law of large numbers for non-negative random variables
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 24, Tome 454 (2016), pp. 183-194

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the rate of convergence in the strong law of large numbers for sequences of non-negative random variables without the independence assumption. We obtain conditions for which an analog of the Baum–Katz theorem holds.
@article{ZNSL_2016_454_a10,
     author = {V. M. Korchevsky},
     title = {On the rate of convergence in the strong law of large numbers for non-negative random variables},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {183--194},
     publisher = {mathdoc},
     volume = {454},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a10/}
}
TY  - JOUR
AU  - V. M. Korchevsky
TI  - On the rate of convergence in the strong law of large numbers for non-negative random variables
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 183
EP  - 194
VL  - 454
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a10/
LA  - ru
ID  - ZNSL_2016_454_a10
ER  - 
%0 Journal Article
%A V. M. Korchevsky
%T On the rate of convergence in the strong law of large numbers for non-negative random variables
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 183-194
%V 454
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a10/
%G ru
%F ZNSL_2016_454_a10
V. M. Korchevsky. On the rate of convergence in the strong law of large numbers for non-negative random variables. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 24, Tome 454 (2016), pp. 183-194. http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a10/