@article{ZNSL_2016_454_a0,
author = {Ya. I. Belopolskaya},
title = {Probabilistic models of parabolic conservation and balance laws and systems with switching regimes},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--42},
year = {2016},
volume = {454},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a0/}
}
TY - JOUR AU - Ya. I. Belopolskaya TI - Probabilistic models of parabolic conservation and balance laws and systems with switching regimes JO - Zapiski Nauchnykh Seminarov POMI PY - 2016 SP - 5 EP - 42 VL - 454 UR - http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a0/ LA - ru ID - ZNSL_2016_454_a0 ER -
Ya. I. Belopolskaya. Probabilistic models of parabolic conservation and balance laws and systems with switching regimes. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 24, Tome 454 (2016), pp. 5-42. http://geodesic.mathdoc.fr/item/ZNSL_2016_454_a0/
[1] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, 1967 | MR
[2] L. C. Evans, “A strong maximum principle for parabolic systems in a convex set”, Proc. AMS, 138:9 (2010), 3179–3185 | DOI | MR | Zbl
[3] M. Freidlin, Functional Integration and Partial Differential Equations, Princeton Univ. Press, 1985 | MR | Zbl
[4] D. Becherer, M. Schweizer, “Classical solutions to reaction-diffusion systems for hedging problems with interacting Ito and point processes”, Ann. Appl. Probab., 15:2 (2005), 1111–1144 | DOI | MR | Zbl
[5] S. I. Boyarchenko, S. Z. Levendorskii, “Pricing American options in regime-switching models”, SIAM J. Control Optim., 48 (2009), 1353–1376 | DOI | MR | Zbl
[6] Ya. I. Belopolskaya, Yu. L. Daletskii, “Issledovanie zadachi Koshi dlya kvazilineinykh parabolicheskikh sistem pri pomoschi markovskikh sluchainykh protsessov”, Izv. vuzov. Matem., 1978, no. 12, 6–17 | MR | Zbl
[7] Ya. Belopolskaya, Yu. Dalecky, Stochastic Equations and Differential Geometry, Kluwer Academic Publishers, 1990 | MR | Zbl
[8] Yu. Tyutyunov, I. Senina, R. Arditi, “Clustering due to acceleration in the response to population gradient: a simple self-organization model”, Amer. Naturalist, 164:6 (2004), 722–735
[9] R. Arditi, J.-M. Callois, Yu. Tyutyunov, C. Jost, “Does mutual interference always stabilize predator-prey dynamics? A comparison of models”, Comptes Rendus Biologies, 327 (2004), 1037–1057 | DOI
[10] E. Pardoux, “Backward stochastic differential equations and viscosity solutions of systems of semilinear parabolic and elliptic PDEs of second order”, Stochast. Anal. Relat. Topics, The Geilo Workshop, Birkhäuser, 1996, 79–127 | MR
[11] E. Pardoux, F. Pradeilles, Z. Rao, “Probabilistic interpretation of a system of semi-linear parabolic partial differential equations.”, Ann. Inst. Henri Poincaré (B) Probab. Statist., 33:4 (1997), 467–490 | DOI | MR | Zbl
[12] Ya. I. Belopolskaya, “Pryamye-obratnye stokhasticheskie uravneniya, svyazannye s sistemami kvazilineinykh parabolicheskikh uravnenii i teoremy sravneniya”, Zap. nauchn. semin. POMI, 412, 2013, 15–46 | MR
[13] Ya. Belopolskaya, “Probabilistic counterparts of nonlinear parabolic PDE systems Modern Stochastics and Applications”, Springer Optimization and Its Applications, 90 (2014), 71–94 | DOI | MR | Zbl
[14] Ya. Belopolskaya, “Probabilistic approaches to nonlinear parabolic equations in jet-bundles”, Global Stochast. Anal., 1 (2011), 3–40 | Zbl
[15] Ya. Belopolskaya, W. Woyczynski, “Generalized solution of the Cauchy problem for systems of nonlinear parabolic equations and diffusion processes”, Stochast. Dynamics, 11:1 (2012), 1–31 | MR
[16] J. Jacod, A. N. Shiryayev, Limit Theorems for Stochastic Processes, Springer-Verlag, New York, 1980 | MR
[17] A. V. Skorohod, Asymptotic Methods in the Theory of Stochastic Differential Equations, Amer. Math. Soc., Providence, RI, 1989 | MR
[18] G. Yin, C. Zhu, “Properties of solutions of stochastic differential equations with continuous-state-dependent switching”, J. Diff. Eq., 249 (2010), 2409–2439 | DOI | MR | Zbl
[19] M.-F. Chen, From Markov Chains to Non-equilibrium Particle Systems, World Scientific, Singapore, 2004 | MR | Zbl